1
|
Co NT, Czaplewski C, Lubecka EA, Liwo A. Implementation of Time-Averaged Restraints with UNRES Coarse-Grained Model of Polypeptide Chains. J Chem Theory Comput 2025. [PMID: 39851064 DOI: 10.1021/acs.jctc.4c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Time-averaged restraints from nuclear magnetic resonance (NMR) measurements have been implemented in the UNRES coarse-grained model of polypeptide chains in order to develop a tool for data-assisted modeling of the conformational ensembles of multistate proteins, intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs), many of which are essential in cell biology. A numerically stable variant of molecular dynamics with time-averaged restraints has been introduced, in which the total energy is conserved in sections of a trajectory in microcanonical runs, the bath temperature is maintained in canonical runs, and the time-average-restraint-force components are scaled up with the length of the memory window so that the restraints affect the simulated structures. The new approach restores the conformational ensembles used to generate ensemble-averaged distances, as demonstrated with synthetic restraints. The approach results in a better fitting of the ensemble-averaged interproton distances to those determined experimentally for multistate proteins and proteins with intrinsically disordered regions, which puts it at an advantage over all-atom approaches with regard to the determination of the conformational ensembles of proteins with diffuse structures, owing to a faster and more robust conformational search.
Collapse
Affiliation(s)
- Nguyen Truong Co
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Dziadek ŁJ, Sieradzan AK, Czaplewski C, Zalewski M, Banaś F, Toczek M, Nisterenko W, Grudinin S, Liwo A, Giełdoń A. Assessment of Four Theoretical Approaches to Predict Protein Flexibility in the Crystal Phase and Solution. J Chem Theory Comput 2024; 20:7667-7681. [PMID: 39171852 PMCID: PMC11391579 DOI: 10.1021/acs.jctc.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this paper, we evaluated the ability of four coarse-grained methods to predict protein flexible regions with potential biological importance, UNRES-flex, UNRES-DSSP-flex (based on the united residue model of polypeptide chains without and with secondary structure restraints, respectively), CABS-flex (based on the C-α, C-β, and side chain model), and nonlinear rigid block normal mode analysis (NOLB) with a set of 100 protein structures determined by NMR spectroscopy or X-ray crystallography, with all secondary structure types. End regions with high fluctuations were excluded from analysis. The Pearson and Spearman correlation coefficients were used to quantify the conformity between the calculated and experimental fluctuation profiles, the latter determined from NMR ensembles and X-ray B-factors, respectively. For X-ray structures (corresponding to proteins in a crowded environment), NOLB resulted in the best agreement between the predicted and experimental fluctuation profiles, while for NMR structures (corresponding to proteins in solution), the ranking of performance is CABS-flex > UNRES-DSSP-flex > UNRES-flex > NOLB; however, CABS-flex sometimes exaggerated the extent of small fluctuations, as opposed to UNRES-DSSP-flex.
Collapse
Affiliation(s)
- Ł J Dziadek
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - A K Sieradzan
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - C Czaplewski
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - M Zalewski
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - F Banaś
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - M Toczek
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - W Nisterenko
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - S Grudinin
- LJK, University Grenoble Alpes, CNRS, Grenoble INP, F-38000 Grenoble, France
| | - A Liwo
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - A Giełdoń
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Leśniewski M, Pyrka M, Czaplewski C, Co NT, Jiang Y, Gong Z, Tang C, Liwo A. Assessment of Two Restraint Potentials for Coarse-Grained Chemical-Cross-Link-Assisted Modeling of Protein Structures. J Chem Inf Model 2024; 64:1377-1393. [PMID: 38345917 PMCID: PMC10900291 DOI: 10.1021/acs.jcim.3c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
The influence of distance restraints from chemical cross-link mass spectroscopy (XL-MS) on the quality of protein structures modeled with the coarse-grained UNRES force field was assessed by using a protocol based on multiplexed replica exchange molecular dynamics, in which both simulated and experimental cross-link restraints were employed, for 23 small proteins. Six cross-links with upper distance boundaries from 4 Å to 12 Å (azido benzoic acid succinimide (ABAS), triazidotriazine (TATA), succinimidyldiazirine (SDA), disuccinimidyl adipate (DSA), disuccinimidyl glutarate (DSG), and disuccinimidyl suberate (BS3)) and two types of restraining potentials ((i) simple flat-bottom Lorentz-like potentials dependent on side chain distance (all cross-links) and (ii) distance- and orientation-dependent potentials determined based on molecular dynamics simulations of model systems (DSA, DSG, BS3, and SDA)) were considered. The Lorentz-like potentials with properly set parameters were found to produce a greater number of higher-quality models compared to unrestrained simulations than the MD-based potentials, because the latter can force too long distances between side chains. Therefore, the flat-bottom Lorentz-like potentials are recommended to represent cross-link restraints. It was also found that significant improvement of model quality upon the introduction of cross-link restraints is obtained when the sum of differences of indices of cross-linked residues exceeds 150.
Collapse
Affiliation(s)
- Mateusz Leśniewski
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Maciej Pyrka
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
- Department
of Physics and Biophysics, University of
Warmia and Mazury, ul. Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Cezary Czaplewski
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nguyen Truong Co
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Yida Jiang
- College
of Chemistry and Molecular Engineering & Center for Quantitative
Biology & PKU-Tsinghua Center for Life Sciences & Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhou Gong
- Innovation
Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 30 W. Xiao Hong Shan, Wuhan 430071, China
| | - Chun Tang
- College
of Chemistry and Molecular Engineering & Center for Quantitative
Biology & PKU-Tsinghua Center for Life Sciences & Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Adam Liwo
- Faculty
of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Borges-Araújo L, Patmanidis I, Singh AP, Santos LHS, Sieradzan AK, Vanni S, Czaplewski C, Pantano S, Shinoda W, Monticelli L, Liwo A, Marrink SJ, Souza PCT. Pragmatic Coarse-Graining of Proteins: Models and Applications. J Chem Theory Comput 2023; 19:7112-7135. [PMID: 37788237 DOI: 10.1021/acs.jctc.3c00733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The molecular details involved in the folding, dynamics, organization, and interaction of proteins with other molecules are often difficult to assess by experimental techniques. Consequently, computational models play an ever-increasing role in the field. However, biological processes involving large-scale protein assemblies or long time scale dynamics are still computationally expensive to study in atomistic detail. For these applications, employing coarse-grained (CG) modeling approaches has become a key strategy. In this Review, we provide an overview of what we call pragmatic CG protein models, which are strategies combining, at least in part, a physics-based implementation and a top-down experimental approach to their parametrization. In particular, we focus on CG models in which most protein residues are represented by at least two beads, allowing these models to retain some degree of chemical specificity. A description of the main modern pragmatic protein CG models is provided, including a review of the most recent applications and an outlook on future perspectives in the field.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Ilias Patmanidis
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Akhil P Singh
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Lucianna H S Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Inserm, CNRS, 06560 Valbonne, France
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita, Okayama 700-8530, Japan
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| |
Collapse
|