1
|
Qiao Y, Gu M, Wang X, Chen R, Kong L, Li S, Li J, Liu Q, Hou S, Wang Z. Revealing Dynamics of Protein Phosphorylation: A Study on the Cashmere Fineness Disparities in Liaoning Cashmere Goats. Mol Biotechnol 2024:10.1007/s12033-024-01244-0. [PMID: 39117978 DOI: 10.1007/s12033-024-01244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Exploring the landscape of protein phosphorylation, this investigation focuses on skin samples from LCG (Liaoning Cashmere Goats), characterized by different levels of cashmere fineness. Employing LC-MS/MS technology, we meticulously scrutinized FT-LCG (fine-type Liaoning Cashmere Goats) and CT-LCG (coarse-type Liaoning Cashmere Goats). Identifying 512 modified proteins, encompassing 1368 phosphorylated peptide segments and 1376 quantifiable phosphorylation sites, our exploration further revealed consistent phosphorylation sites in both groups. Analysis of phosphorylated peptides unveiled kinase substrates, prominently featuring Protein Kinase C, Protein Kinase B and MAPK3-MAPK1-MAPK7-NLK-group. Differential analysis spotlighted 28 disparate proteins, comprising six upregulated and twenty-two downregulated. Cluster analysis showcased the robust clustering efficacy of the two sample groups. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses underscored the significance of the purine metabolism pathway, suggesting its pivotal role in modulating cashmere fineness in LCG. Notably, through differential protein analysis, two crucial proteins were identified: HSL-X (hormone-sensitive lipase isoform X1) and KPRP (keratinocyte proline-rich protein). Further evidence supports LIPE and KPRP as key genes regulating cashmere fineness, paving the way for promising avenues in further research. These findings not only contribute to a nuanced understanding of protein-level dynamics in cashmere but also provide a theoretical foundation for the selective breeding of superior Liaoning Cashmere Goat strands.
Collapse
Affiliation(s)
- Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lingchao Kong
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuaitong Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiaqi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qingkun Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sibing Hou
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Chen L, Yu Q, Guo F, Wang X, Cai Z, Zhou Q. Neurotensin counteracts hair growth inhibition induced by chronic restraint stress. Exp Dermatol 2024; 33:e14990. [PMID: 38071436 DOI: 10.1111/exd.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/30/2024]
Abstract
Stress has been considered as a potential trigger for hair loss through the neuroendocrine-hair follicle (HF) axis. Neurotensin (NTS), a neuropeptide, is known to be dysregulated in the inflammatory-associated skin diseases. However, the precise role of NTS in stress-induced hair loss is unclear. To investigate the function and potential mechanisms of NTS in stress-induced hair growth inhibition, we initially detected the expression of neurotensin receptor (Ntsr) and NTS in the skin tissues of stressed mice by RNA-sequencing and ELISA. We found chronic restraint stress (CRS) significantly decreased the expression of both NTS and Ntsr in the skin tissues of mice. Intracutaneous injection of NTS effectively counteracted CRS-induced inhibition of hair growth in mice. Furthermore, NTS regulated a total of 1093 genes expression in human dermal papilla cells (HDPC), with 591 genes being up-regulated and 502 genes being down-regulated. GO analysis showed DNA replication, cell cycle, integral component of plasma membrane and angiogenesis-associated genes were significantly regulated by NTS. KEGG enrichment demonstrated that NTS also regulated genes related to the Hippo signalling pathway, axon guidance, cytokine-cytokine receptor interaction and Wnt signalling pathway in HDPC. Our results not only uncovered the potential effects of NTS on stress-induced hair growth inhibition but also provided an understanding of the mechanisms at the gene transcriptional level.
Collapse
Affiliation(s)
- Lingjing Chen
- Department of Dermatology, Hangzhou Children's Hospital, Hangzhou, China
| | - Qing Yu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Dermatology, Yuyao People's Hospital, Ningbo, China
| | - Feiying Guo
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Dermatology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenying Cai
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Xie L, Zhang J, Zeng P, Feng Y, Wu X. The Membrane Phospholipidomics Research of Oxidatively Damaged INS-1 Pancreatic Beta Cells Intervened by the Effective Constituents of Anemarrhenae Asphodeloides Rhizoma. Chem Biodivers 2023; 20:e202300578. [PMID: 37458474 DOI: 10.1002/cbdv.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
The rhizoma of Anemarrhenae asphodeloides has a long history of hypoglycemic use in Chinese traditional medicine. In this article, 400 μmol/L H2 O2 induced normal INS-1 pancreatic beta cells to establish experimental model of oxidative damage. Quercetin was used as a positive drug, and mangiferin and its ethanolic extract were selected as therapeutic agents in an oxidative damage model to evaluate the ameliorative effect of the active ingredients of Anemarrhenae asphodeloides rhizoma on oxidative damage in INS-1 pancreatic β-cells. Building a qualitative analysis method of membrane phospholipids of INS-1 pancreatic beta cells and identified 82 phospholipids based on the UPLC/Q-TOF MS technology, which could provide a database for further statistics analysis. OPLS-DA was used to screen the phospholipid biomarkers from the raw data. Exploring the biological significances of these biomarkers, and discussing the toxic effect of the effective components of Anemarrhena asphodeloides rhizoma, on oxidatively damaged INS-1 pancreatic beta cell.
Collapse
Affiliation(s)
- Luming Xie
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| | - Jing Zhang
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| | - Pingyan Zeng
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| | - Yifan Feng
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| | - Xia Wu
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| |
Collapse
|
4
|
Xu Y, Cai W, Chen R, Zhang X, Bai Z, Zhang Y, Qin Y, Gu M, Sun Y, Wu Y, Wang Z. Metabolomic Analysis and MRM Verification of Coarse and Fine Skin Tissues of Liaoning Cashmere Goat. Molecules 2022; 27:molecules27175483. [PMID: 36080249 PMCID: PMC9457707 DOI: 10.3390/molecules27175483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
One of the critical elements in evaluating the quality of cashmere is its fineness, but we still know little about how it is regulated at the metabolic level. In this paper, we use UHPLC–MS/MS detection and analysis technology to compare the difference in metabolites between coarse cashmere (CT_LCG) and fine cashmere (FT_LCG) skin of Liaoning cashmere goats. According to the data, under positive mode four metabolites were significantly up-regulated and seven were significantly down-regulated. In negative mode, seven metabolites were significantly up-regulated and fourteen metabolites were significantly down-regulated. The two groups’ most significant metabolites, Gly–Phe and taurochenodeoxycholate, may be crucial in controlling cashmere’s growth, development, and fineness. In addition, we enriched six KEGG pathways, of which cholesterol metabolism, primary bile acid biosynthesis, and bile secretion were enriched in positive and negative modes. These findings offer a new research idea for further study into the critical elements influencing cashmere’s fineness.
Collapse
|