1
|
Crack JC, Le Brun NE. Synergy of native mass spectrometry and other biophysical techniques in studies of iron‑sulfur cluster proteins and their assembly. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119865. [PMID: 39442807 DOI: 10.1016/j.bbamcr.2024.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The application of mass spectrometric methodologies has revolutionised biological chemistry, from identification through to structural and conformational studies of proteins and other macromolecules. Native mass spectrometry (MS), in which proteins retain their native structure, is a rapidly growing field. This is particularly the case for studies of metalloproteins, where non-covalently bound cofactors remain bound following ionisation. Such metalloproteins include those that contain an iron‑sulfur (FeS) cluster and, despite their fragility and O2 sensitivity, they have been a particular focus for applications of native MS because of its capacity to accurately monitor mass changes that reveal chemical changes at the cluster. Here we review recent advances in these applications of native MS, which, together with data from more traditionally applied biophysical methods, have yielded a remarkable breadth of information about the FeS species present, and provided key mechanistic insight not only for FeS cluster proteins themselves, but also their assembly.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK..
| |
Collapse
|
2
|
Li Y, Li W, Zheng Y, Wang T, Pu R, Zhang Z. Desalting strategies for native mass spectrometry. Talanta 2025; 281:126824. [PMID: 39250868 DOI: 10.1016/j.talanta.2024.126824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
In native mass spectrometry (MS) salts are indispensable for preserving the native structures of biomolecules, but detrimental to mass sensitivity, resolution, and accuracy. Such a conflict makes desalting in native MS more challenging, distinctive, and sample-dependent than in peptide-centric MS. This review first briefly introduces the charged residue mechanism whereby native-like gaseous protein ions are released from electrospray droplets, revealing a higher degree of salt adduction than denatured proteins. Subsequently, this review summarizes and explores the existing strategies, underlying mechanisms and future perspectives of desalting in native MS. These strategies mainly focus on buffer exchange into volatile salts (offline and online approaches), addition of solution additives (e.g., anion, supercharging reagent, solution phase chelator and amino acid), use of submicron electrospray emitters (down to 60 nm), and other potential approaches (e.g., induced and electrophoretic nanoelectrospray ionization). The strategies of online buffer exchange and using nanoscale electrospray emitters are highlighted. This review would not only be a valuable addition to the field of sample preparation in MS, but would also serve as a beginner's guide to desalting in native MS.
Collapse
Affiliation(s)
- Yun Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Weijie Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ruijin Pu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
| |
Collapse
|
3
|
Jumde RP, Jézéquel G, Saramago M, Frank N, Adam S, Cunha MV, Bader CD, Gunesch AP, Köhler NM, Johannsen S, Bousis S, Pietschmann T, Matos RG, Müller R, Arraiano CM, Hirsch AKH. Dynamic Combinatorial Chemistry Unveils Nsp10 Inhibitors with Antiviral Potential Against SARS-CoV-2. Chemistry 2024:e202403390. [PMID: 39676060 DOI: 10.1002/chem.202403390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
The development of antiviral drugs against the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) responsible for the recent Covid-19 pandemic is crucial, as treatment options remain limited and vaccination does not prevent (re)infection. Two relatively underexplored targets of this virus are the 3'-5' exoribonuclease (ExoN) and the 2'-O-methyltransferase (2'-O-MTase), both essential for viral viability. The non-structural proteins Nsp14 and Nsp16 exhibit enzymatic activities for ExoN and 2'-O-MTase, respectively, especially when in complex with their co-factor protein Nsp10. The study focuses on the use of target-directed dynamic combinatorial chemistry (tdDCC) to identify binders of Nsp10, aiming to disturb the protein-protein interactions (PPI) involving Nsp10-Nsp14, as well as Nsp10-Nsp16. We synthesised the hits and evaluated them to assess Nsp10 affinity, ExoN and 2'-O-MTase activities inhibition, and antiviral activity in hCoV-229E and SARS-CoV-2-infected whole-cell settings. This study reports a novel class of ExoN and/or 2'-O-MTase inhibitors exhibiting antiviral activity against coronaviruses.
Collapse
Affiliation(s)
- Ravindra P Jumde
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany
- Current address, Global Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202, Geneva, Switzerland
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Nicolas Frank
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus E 8.1, 66123, Saarbrücken, Germany
| | - Sebastian Adam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany
| | - Marta V Cunha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Chantal D Bader
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany
| | - Antonia P Gunesch
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Natalie M Köhler
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Sandra Johannsen
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus E 8.1, 66123, Saarbrücken, Germany
| | - Spyridon Bousis
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus E 8.1, 66123, Saarbrücken, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
- Helmholtz International Lab for Anti-infectives, Campus E 8.1, 66123, Saarbrücken, Germany
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus E 8.1, 66123, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
- Helmholtz International Lab for Anti-infectives, Campus E 8.1, 66123, Saarbrücken, Germany
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus E 8.1, 66123, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
- Helmholtz International Lab for Anti-infectives, Campus E 8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
4
|
Mohammed I, Sagurthi SR. Current Approaches and Strategies Applied in First-in-class Drug Discovery. ChemMedChem 2024:e202400639. [PMID: 39648151 DOI: 10.1002/cmdc.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
First-in-class drug discovery (FICDD) offers novel therapies, new biological targets and mechanisms of action (MOAs) toward targeting various diseases and provides opportunities to understand unexplored biology and to target unmet diseases. Current screening approaches followed in FICDD for discovery of hit and lead molecules can be broadly categorized and discussed under phenotypic drug discovery (PDD) and target-based drug discovery (TBDD). Each category has been further classified and described with suitable examples from the literature outlining the current trends in screening approaches applied in small molecule drug discovery (SMDD). Similarly, recent applications of functional genomics, structural biology, artificial intelligence (AI), machine learning (ML), and other such advanced approaches in FICDD have also been highlighted in the article. Further, some of the current medicinal chemistry strategies applied during discovery of hits and optimization studies such as hit-to-lead (HTL) and lead optimization (LO) have been simultaneously overviewed in this article.
Collapse
Affiliation(s)
- Idrees Mohammed
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Someswar Rao Sagurthi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, Telangana, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
5
|
Kim D, Liu W, Viner R, Cherezov V. Native mass spectrometry prescreening of G protein-coupled receptor complexes for cryo-EM structure determination. Structure 2024; 32:2206-2219.e4. [PMID: 39471802 PMCID: PMC11625002 DOI: 10.1016/j.str.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
G protein-coupled receptors (GPCRs) are essential transmembrane proteins playing key roles in human health and disease. Understanding their atomic-level molecular structure and conformational states is imperative for advancing drug development. Recent breakthroughs in single-particle cryogenic electron microscopy (cryo-EM) have propelled the structural biology of GPCRs into a new era. Nevertheless, the preparation of suitable GPCR samples and their complexes for cryo-EM analysis remains challenging due to their poor stability and highly dynamic nature. Here, we present our online buffer exchange-native MS method combined with Direct Mass Technology (OBE-nMS+DMT) which facilitates high-throughput analysis and guides sample preparation. We applied this method to optimize the GPR119-Gs complex sample prior to cryo-EM analysis, leading to a 3.51 Å resolution structure from only 396 movies collected on a 200 kV Glacios. This study suggests that the OBE-nMS+DMT method emerges as a powerful tool for prescreening sample conditions in cryo-EM studies of GPCRs and other membrane protein complexes.
Collapse
Affiliation(s)
- Donggyun Kim
- Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Weijing Liu
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA 95134, USA
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA 95134, USA.
| | - Vadim Cherezov
- Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
6
|
Harrison JA, Gabriel J, Pruška A, Zenobi R. Conformational Dynamics of Hemoglobin in Solution and the Gas Phase Elucidated by Mass Spectrometry. Anal Chem 2024. [PMID: 39556209 DOI: 10.1021/acs.analchem.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Solution and gas-phase measurements can provide valuable insights into biomolecular conformational dynamics. By comparing the data from such experiments, it is possible to elucidate the nature of the interactions governing a biomolecule's stability. Here, we measured human, bovine, and porcine hemoglobin stability in solution and the gas phase using collision-induced dissociation, collision-induced unfolding, surface-induced dissociation, and temperature-controlled nanoelectrospray mass spectrometry. Hemoglobin dimer and tetramer stability in solution and gas phases did not correlate, likely due to differences in the composition of positive and negative amino acids on the surface of these molecules. Specifically, the absence of Lys-116 on the β-subunit makes it easier for the human hemoglobin dimer to dissociate in the gas phase. However, the presence of Lys-60 makes the subunit more rigid thus it cannot unfold to the same extent as the other hemoglobin. Hemoglobin tetramers of different origins had similar stability in the gas phase, as there was no difference in the composition of charged amino acids at the tetramer interface. These results highlight how temperature-controlled mass spectrometry and collision-induced unfolding can elucidate the structural reasons behind differences in the gas-phase and solution stability of protein complexes.
Collapse
Affiliation(s)
- Julian A Harrison
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Janic Gabriel
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
7
|
Sokratous K, Cooper-Shepherd DA, Ujma J, Qu F, Giles K, Ben-Younis A, Hensen M, Langridge JI, Gault J, Jazayeri A, Liko I, Hopper JTS. Enhanced Declustering Enables Native Top-Down Analysis of Membrane Protein Complexes using Ion-Mobility Time-Aligned Fragmentation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1891-1901. [PMID: 39007842 DOI: 10.1021/jasms.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Native mass spectrometry (MS) is proving to be a disruptive technique for studying the interactions of proteins, necessary for understanding the functional roles of these biomolecules. Recent research is expanding the application of native MS towards membrane proteins directly from isolated membrane preparations or from purified detergent micelles. The former results in complex spectra comprising several heterogeneous protein complexes; the latter enables therapeutic protein targets to be screened against multiplexed preparations of compound libraries. In both cases, the resulting spectra are increasingly complex to assign/interpret, and the key to these new directions of native MS research is the ability to perform native top-down analysis, which allows unambiguous peak assignment. To achieve this, detergent removal is necessary prior to MS analyzers, which allow selection of specific m/z values, representing the parent ion for downstream activation. Here, we describe a novel, enhanced declustering (ED) device installed into the first pumping region of a cyclic IMS-enabled mass spectrometry platform. The device enables declustering of ions prior to the quadrupole by imparting collisional activation through an oscillating electric field applied between two parallel plates. The positioning of the device enables liberation of membrane protein ions from detergent micelles. Quadrupole selection can now be utilized to isolate protein-ligand complexes, and downstream collision cells enable the dissociation and identification of binding partners. We demonstrate that ion mobility (IM) significantly aids in the assignment of top-down spectra, aligning fragments to their corresponding parent ions by means of IM drift time. Using this approach, we were able to confidently assign and identify a novel hit compound against PfMATE, obtained from multiplexed ligand libraries.
Collapse
Affiliation(s)
- Kleitos Sokratous
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | | | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Feng Qu
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Kevin Giles
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Aisha Ben-Younis
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Mario Hensen
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - James I Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Joseph Gault
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Ali Jazayeri
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Idlir Liko
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Jonathan T S Hopper
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| |
Collapse
|
8
|
Sternicki LM, Poulsen SA. Fragment-based drug discovery campaigns guided by native mass spectrometry. RSC Med Chem 2024; 15:2270-2285. [PMID: 39026646 PMCID: PMC11253872 DOI: 10.1039/d4md00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Native mass spectrometry (nMS) is well established as a biophysical technique for characterising biomolecules and their interactions with endogenous or investigational small molecule ligands. The high sensitivity mass measurements make nMS particularly well suited for applications in fragment-based drug discovery (FBDD) screening campaigns where the detection of weakly binding ligands to a target biomolecule is crucial. We first reviewed the contributions of nMS to guiding FBDD hit identification in 2013, providing a comprehensive perspective on the early adoption of nMS for fragment screening. Here we update this initial progress with a focus on contributions of nMS that have guided FBDD for the period 2014 until end of 2023. We highlight the development of nMS adoption in FBDD in the context of other biophysical fragment screening techniques. We also discuss the roadmap for increased adoption of nMS for fragment screening beyond soluble proteins, including for guiding the discovery of fragments supporting advances in PROTAC discovery, RNA-binding small molecules and covalent therapeutic drug discovery.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| |
Collapse
|
9
|
Phan M, Chandrashekaran IR, Akhtar N, Konstantinidou E, Devine SM, Doak BC, Nebl T, Creek DJ, Scanlon MJ, Norton RS. Multiplexed Native Mass Spectrometry Determination of Ligand Selectivity for Fatty Acid-Binding Proteins. ACS Med Chem Lett 2024; 15:1071-1079. [PMID: 39015264 PMCID: PMC11247632 DOI: 10.1021/acsmedchemlett.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Although multiple approaches for characterizing protein-ligand interactions are available in target-based drug discovery, their throughput for determining selectivity is quite limited. Herein, we describe the application of native mass spectrometry for rapid, multiplexed screening of the selectivity of eight small-molecule ligands for five fatty acid-binding protein isoforms. Using high-resolution mass spectrometry, we were able to identify and quantify up to 20 different protein species in a single spectrum. We show that selectivity profiles generated by native mass spectrometry are in good agreement with those of traditional solution-phase techniques such as isothermal titration calorimetry and fluorescence polarization. Furthermore, we propose strategies for effective investigation of selectivity by native mass spectrometry, thus highlighting the potential of this technique to be used as an orthogonal method to traditional biophysical approaches for rapid, multiplexed screening of protein-ligand complexes.
Collapse
Affiliation(s)
- Michelle
Q. Phan
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Indu R. Chandrashekaran
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Naureen Akhtar
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Evgenia Konstantinidou
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bradley C. Doak
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas Nebl
- Biologics
Research and Development Group, Biomedical Manufacturing Program, CSIRO, Clayton, Victoria 3168, Australia
| | - Darren J. Creek
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Martin J. Scanlon
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S. Norton
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
10
|
Keskin B, Chen CS, Tsai PS, Du PX, Santos JHM, Syu GD. Reverse-Phase Protein Microarrays for Overexpressed Escherichia coli Lysates Reveal a Novel Tyrosine Kinase. Anal Chem 2024; 96:8721-8729. [PMID: 38683735 PMCID: PMC11140677 DOI: 10.1021/acs.analchem.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Tyrosine phosphorylation is one of the most important posttranslational modifications in bacteria, linked to regulating growth, migration, virulence, secondary metabolites, biofilm formation, and capsule production. Only two tyrosine kinases (yccC (etk) and wzc) have been identified in Escherichia coli. The investigation by similarity has not revealed any novel BY-kinases in silico so far, most probably due to their sequence and structural variability. Here we developed a reverse-phase protein array from 4126 overexpressed E. coli clones, lysed, and printed on coated glass slides. These high-density E. coli lysate arrays (ECLAs) were quality controlled by the reproducibility and immobilization of total lysate proteins and specific overexpressed proteins. ECLAs were used to interrogate the relationship between protein overexpression and tyrosine phosphorylation in the total lysate. We identified 6 protein candidates, including etk and wzc, with elevated phosphotyrosine signals in the total lysates. Among them, we identified a novel kinase nrdD with autophosphorylation and transphosphorylation activities in the lysates. Moreover, the overexpression of nrdD induced biofilm formation. Since nrdD is a novel kinase, we used E. coli proteome microarrays (purified 4,126 E. coli proteins) to perform an in vitro kinase assay and identified 33 potential substrates. Together, this study established a new ECLA platform for interrogating posttranslational modifications and identified a novel kinase that is important in biofilm formation, which will shed some light on bacteria biochemistry and new ways to impede drug resistance.
Collapse
Affiliation(s)
- Batuhan
Birol Keskin
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Sheng Chen
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Shan Tsai
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Xian Du
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - John Harvey M. Santos
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Centre
for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guan-Da Syu
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- International
Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device
Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
11
|
Mi W, Zhang X, Wang B, Sun R, Ma S, Hu Z, Dai X. Absolute protein quantification based on calibrated particle counting using electrospray-differential mobility analysis. Anal Chim Acta 2024; 1304:342534. [PMID: 38637035 DOI: 10.1016/j.aca.2024.342534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The traceability of in vitro diagnostics or drug products is based on the accurate quantification of proteins. In this study, we developed an absolute quantification approach for proteins. This method is based on calibrated particle counting using electrospray-differential mobility analysis (ES-DMA) coupled with a condensation particle counter (CPC). The absolute concentration of proteins was quantified with the observed protein particle number measured with ES-DMA-CPC, and the detection efficiency was determined by calibrators. The measurement performance and quantitative level were verified using two certificated reference materials, BSA and NIMCmAb. The linear regression fit for the detection efficiency values of three reference materials and one highly purified protein (myoglobin, BSA, NIMCmAb and fibrinogen) indicated that the detection efficiency and the particle size distribution of these proteins exhibited a linear relationship. Moreover, to explore the suitability of the detection efficiency-particle size curve for protein quantification, the concentrations of three typical proteinaceous particles, including two high molecular weight proteins (NIST reference material 8671 and D-dimer) and one protein complex (glutathione S-transferase dimer), were determined. This work suggests that this calibrated particle counting method is an efficient approach for nondestructive, rapid and accurate quantification of proteins, especially for measuring proteinaceous particles with tremendous size and without reference standards.
Collapse
Affiliation(s)
- Wei Mi
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinyi Zhang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Bin Wang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Ruixue Sun
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Shangying Ma
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Zhishang Hu
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinhua Dai
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| |
Collapse
|
12
|
Thibert S, Reid DJ, Wilson JW, Varikoti R, Maltseva N, Schultz KJ, Kruel A, Babnigg G, Joachimiak A, Kumar N, Zhou M. Native Mass Spectrometry Dissects the Structural Dynamics of an Allosteric Heterodimer of SARS-CoV-2 Nonstructural Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:912-921. [PMID: 38535992 PMCID: PMC11066969 DOI: 10.1021/jasms.3c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
Structure-based drug design, which relies on precise understanding of the target protein and its interaction with the drug candidate, is dramatically expedited by advances in computational methods for candidate prediction. Yet, the accuracy needs to be improved with more structural data from high throughput experiments, which are challenging to generate, especially for dynamic and weak associations. Herein, we applied native mass spectrometry (native MS) to rapidly characterize ligand binding of an allosteric heterodimeric complex of SARS-CoV-2 nonstructural proteins (nsp) nsp10 and nsp16 (nsp10/16), a complex essential for virus survival in the host and thus a desirable drug target. Native MS showed that the dimer is in equilibrium with monomeric states in solution. Consistent with the literature, well characterized small cosubstrate, RNA substrate, and product bind with high specificity and affinity to the dimer but not the free monomers. Unsuccessfully designed ligands bind indiscriminately to all forms. Using neutral gas collision, the nsp16 monomer with bound cosubstrate can be released from the holo dimer complex, confirming the binding to nsp16 as revealed by the crystal structure. However, we observed an unusual migration of the endogenous zinc ions bound to nsp10 to nsp16 after collisional dissociation. The metal migration can be suppressed by using surface collision with reduced precursor charge states, which presumably resulted in minimal gas-phase structural rearrangement and highlighted the importance of complementary techniques. With minimal sample input (∼μg), native MS can rapidly detect ligand binding affinities and locations in dynamic multisubunit protein complexes, demonstrating the potential of an "all-in-one" native MS assay for rapid structural profiling of protein-to-AI-based compound systems to expedite drug discovery.
Collapse
Affiliation(s)
- Stephanie
M. Thibert
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Deseree J. Reid
- Chemical
and Biological Signature Sciences, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jesse W. Wilson
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Rohith Varikoti
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Natalia Maltseva
- Center
for Structural Biology of Infectious Diseases, Consortium for Advanced
Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Structural
Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Katherine J. Schultz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Agustin Kruel
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Gyorgy Babnigg
- Center
for Structural Biology of Infectious Diseases, Consortium for Advanced
Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Biosciences
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Andrzej Joachimiak
- Center
for Structural Biology of Infectious Diseases, Consortium for Advanced
Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Structural
Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Neeraj Kumar
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
13
|
Eronen V, Iljin K, Pääkkönen J, Jänis J, Rouvinen J, Nevanen TK, Hakulinen N. Robust Approach for Quantifying Glucocorticoid Binding to the Anti-Cortisol Fab Fragment via Native Mass Spectrometry. ACS OMEGA 2024; 9:17089-17096. [PMID: 38645339 PMCID: PMC11024979 DOI: 10.1021/acsomega.3c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
In the development of proteins, aptamers, and molecular imprints for diagnostic purposes, a major goal is to obtain a molecule with both a high binding affinity and specificity for the target ligand. Cushing syndrome or Addison's disease can be diagnosed by cortisol level tests. We have previously characterized and solved the crystal structure of an anti-cortisol (17) Fab fragment having a high affinity to cortisol but also significant cross-reactivity to other glucocorticoids, especially the glucocorticoid drug prednisolone. We used native mass spectrometry (MS) to determine the binding affinities of nine steroid hormones to anti-cortisol (17) Fab, including steroidogenic precursors of cortisol. Based on the results, the number of hydroxyl groups in the structure of a steroid ligand plays a key role in the antigen recognition by the Fab fragment as the ligands with three hydroxyl groups, cortisol and prednisolone, had the highest affinities. The antibody affinity toward steroid hormones often decreases with a decrease in the number of hydroxyl groups in the structure. The presence of the hydroxyl group at position C11 increased the affinity more than did the other hydroxyl groups at positions C17 or C21. The binding affinities obtained by native MS were compared to the values determined by surface plasmon resonance (SPR), and the affinities were found to correlate well between these two techniques. Our study demonstrates that native MS with a large dynamic range and high sensitivity is a versatile tool for ligand binding studies of proteins.
Collapse
Affiliation(s)
- Veikko Eronen
- Department
of Chemistry, University of Eastern Finland, PO BOX 111, 80100 Joensuu, Finland
| | - Kristiina Iljin
- VTT
Technical Research Center of Finland Ltd., Tietotie 2, 02150 Espoo, Finland
| | - Johan Pääkkönen
- Department
of Chemistry, University of Eastern Finland, PO BOX 111, 80100 Joensuu, Finland
| | - Janne Jänis
- Department
of Chemistry, University of Eastern Finland, PO BOX 111, 80100 Joensuu, Finland
| | - Juha Rouvinen
- Department
of Chemistry, University of Eastern Finland, PO BOX 111, 80100 Joensuu, Finland
| | - Tarja K. Nevanen
- VTT
Technical Research Center of Finland Ltd., Tietotie 2, 02150 Espoo, Finland
| | - Nina Hakulinen
- Department
of Chemistry, University of Eastern Finland, PO BOX 111, 80100 Joensuu, Finland
| |
Collapse
|
14
|
Gu Y, Liu M, Ma L, Quinn RJ. Advancing Kir4.2 Channel Ligand Identification through Collision-Induced Affinity Selection Mass Spectrometry. ACS Chem Biol 2024; 19:763-773. [PMID: 38449446 PMCID: PMC10949200 DOI: 10.1021/acschembio.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The inwardly rectifying potassium Kir4.2 channel plays a crucial role in regulating membrane potentials and maintaining potassium homeostasis. Kir4.2 has been implicated in various physiological processes, including insulin secretion, gastric acid regulation, and the pathogenesis of central nervous system diseases. Despite its significance, the number of identified ligands for Kir4.2 remains limited. In this study, we established a method to directly observe ligands avoiding a requirement to observe the high-mass ligand-membrane protein-detergent complexes. This method used collision-induced affinity selection mass spectrometry (CIAS-MS) to identify ligands dissociated from the Kir4.2 channel-detergent complex. The CIAS-MS approach integrated all stages of affinity selection within the mass spectrometer, offering advantages in terms of time efficiency and cost-effectiveness. Additionally, we explored the effect of collisional voltage ramps on the dissociation behavior of the ligand and the ligand at different concentrations, demonstrating dose dependency.
Collapse
Affiliation(s)
- Yushu Gu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Miaomiao Liu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Linlin Ma
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
- School
of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
15
|
Oluwole A, Hernández-Rocamora VM, Cao Y, Li X, Vollmer W, Robinson CV, Bolla JR. Real-Time Biosynthetic Reaction Monitoring Informs the Mechanism of Action of Antibiotics. J Am Chem Soc 2024; 146:7007-7017. [PMID: 38428018 PMCID: PMC10941186 DOI: 10.1021/jacs.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
The rapid spread of drug-resistant pathogens and the declining discovery of new antibiotics have created a global health crisis and heightened interest in the search for novel antibiotics. Beyond their discovery, elucidating mechanisms of action has necessitated new approaches, especially for antibiotics that interact with lipidic substrates and membrane proteins. Here, we develop a methodology for real-time reaction monitoring of the activities of two bacterial membrane phosphatases, UppP and PgpB. We then show how we can inhibit their activities using existing and newly discovered antibiotics such as bacitracin and teixobactin. Additionally, we found that the UppP dimer is stabilized by phosphatidylethanolamine, which, unexpectedly, enhanced the speed of substrate processing. Overall, our results demonstrate the potential of native mass spectrometry for real-time biosynthetic reaction monitoring of membrane enzymes, as well as their in situ inhibition and cofactor binding, to inform the mode of action of emerging antibiotics.
Collapse
Affiliation(s)
- Abraham
O. Oluwole
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Víctor M. Hernández-Rocamora
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, U.K.
| | - Yihui Cao
- Department
of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Xuechen Li
- Department
of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Waldemar Vollmer
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, U.K.
- Institute
for Molecular Bioscience, University of
Queensland, Carmody Road, Brisbane, Queensland 4072, Australia
| | - Carol V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Jani R. Bolla
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- Department
of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K.
| |
Collapse
|
16
|
Gu Y, Liu M, Ma L, Quinn RJ. Identification of Ligands for Ion Channels: TRPM2. Chembiochem 2024; 25:e202300790. [PMID: 38242853 DOI: 10.1002/cbic.202300790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, nonselective cation channel with a widespread distribution throughout the body. It is involved in many pathological and physiological processes, making it a potential therapeutic target for various diseases, including Alzheimer's disease, Parkinson's disease, and cancers. New analytical techniques are beneficial for gaining a deeper understanding of its involvement in disease pathogenesis and for advancing the drug discovery for TRPM2-related diseases. In this work, we present the application of collision-induced affinity selection mass spectrometry (CIAS-MS) for the direct identification of ligands binding to TRPM2. CIAS-MS circumvents the need for high mass detection typically associated with mass spectrometry of large membrane proteins. Instead, it focuses on the detection of small molecules dissociated from the ligand-protein-detergent complexes. This affinity selection approach consolidates all affinity selection steps within the mass spectrometer, resulting in a streamlined process. We showed the direct identification of a known TRPM2 ligand dissociated from the protein-ligand complex. We demonstrated that CIAS-MS can identify binding ligands from complex mixtures of compounds and screened a compound library against TRPM2. We investigated the impact of voltage increments and ligand concentrations on the dissociation behavior of the binding ligand, revealing a dose-dependent relationship.
Collapse
Affiliation(s)
- Yushu Gu
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, N34 1.29, Nathan Campus, Brisbane, Queensland, 4111, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| |
Collapse
|
17
|
Townsend JA, Fapohunda O, Wang Z, Pham H, Taylor MT, Kloss B, Ho Park S, Opella S, Aspinwall CA, Marty MT. Differences in Oligomerization of the SARS-CoV-2 Envelope Protein, Poliovirus VP4, and HIV Vpu. Biochemistry 2024; 63:241-250. [PMID: 38216552 PMCID: PMC10872257 DOI: 10.1021/acs.biochem.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Viroporins constitute a class of viral membrane proteins with diverse roles in the viral life cycle. They can self-assemble and form pores within the bilayer that transport substrates, such as ions and genetic material, that are critical to the viral infection cycle. However, there is little known about the oligomeric state of most viroporins. Here, we use native mass spectrometry in detergent micelles to uncover the patterns of oligomerization of the full-length SARS-CoV-2 envelope (E) protein, poliovirus VP4, and HIV Vpu. Our data suggest that the E protein is a specific dimer, VP4 is exclusively monomeric, and Vpu assembles into a polydisperse mixture of oligomers under these conditions. Overall, these results revealed the diversity in the oligomerization of viroporins, which has implications for the mechanisms of their biological functions as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
- Julia A. Townsend
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Oluwaseun Fapohunda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Zhihan Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Hieu Pham
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Taylor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Craig A. Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
18
|
Sternicki LM, Poulsen SA. Native Mass Spectrometry: Insights and Opportunities for Targeted Protein Degradation. Anal Chem 2023; 95:18655-18666. [PMID: 38090751 DOI: 10.1021/acs.analchem.3c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Native mass spectrometry (nMS) is one of the most powerful biophysical methods for the direct observation of noncovalent protein interactions with both small molecules and other proteins. With the advent of targeted protein degradation (TPD), nMS is now emerging as a compelling approach to characterize the multiple fundamental interactions that underpin the TPD mechanism. Specifically, nMS enables the simultaneous observation of the multiple binary and ternary complexes [i.e., all combinations of E3 ligase, target protein of interest, and small molecule proximity-inducing reagents (such as PROteolysis TArgeting Chimeras (PROTACs) and molecular glues)], formed as part of the TPD equilibrium; this is not possible with any other biophysical method. In this paper we overview the proof-of-concept applications of nMS within the field of TPD and demonstrate how it is providing researchers with critical insight into the systems under study. We also provide an outlook on the scope and future opportunities offered by nMS as a core and agnostic biophysical tool for advancing research developments in TPD.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
19
|
Townsend JA, Fapohunda O, Wang Z, Pham H, Taylor MT, Kloss B, Park SH, Opella S, Aspinwall CA, Marty MT. Differences in Oligomerization of the SARS-CoV-2 Envelope Protein, Poliovirus VP4, and HIV Vpu. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553902. [PMID: 37645758 PMCID: PMC10462163 DOI: 10.1101/2023.08.18.553902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Viroporins constitute a class of viral membrane proteins with diverse roles in the viral life cycle. They can self-assemble and form pores within the bilayer that transport substrates, such as ions and genetic material, that are critical to the viral infection cycle. However, there is little known about the oligomeric state of most viroporins. Here, we use native mass spectrometry (MS) in detergent micelles to uncover the patterns of oligomerization of the full-length SARS-CoV-2 envelope (E) protein, poliovirus VP4, and HIV Vpu. Our data suggest that the E protein is a specific dimer, VP4 is exclusively monomeric, and Vpu assembles into a polydisperse mixture of oligomers under these conditions. Overall, these results revealed the diversity in the oligomerization of viroporins, which has implications for mechanisms of their biological functions as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
- Julia A. Townsend
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Oluwaseun Fapohunda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Zhihan Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Hieu Pham
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Taylor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Craig A. Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
Dai J, Ji C. In-depth size and charge variants characterization of monoclonal antibody with native mass spectrometry. Anal Chim Acta 2023; 1265:341360. [PMID: 37230578 DOI: 10.1016/j.aca.2023.341360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Although the reversed-phase liquid chromatography (RPLC) is the most used separation front for mass spectrometry, many other separation modes are critical for enabling characterization of the protein therapeutics. Specifically, chromatographic separations under native conditions, such as those based on size exclusion chromatography (SEC) and ion-exchange chromatography (IEX), are used for characterizing important biophysical properties of protein variants in drug substance and drug product. Because most native state separation modes use non-volatile buffers with high salt concentration, optical detection has been traditionally used. However, there is an increasing need to understand and identify the optical underlying peaks by mass spectrometry for structure elucidation. For size variant separation by SEC, the native MS helps to understand the nature of the high molecular weight species, as well as clipping sites for low molecular weight fragments. For charge variant separation by IEX, native MS can reveal the post-translational modifications or other important factors contributing to charge heterogeneity at the intact level. Here, we demonstrate the power of native MS by direct coupling of SEC and IEX eluent to a time-of-flight mass spectrometer to characterize bevacizumab and NISTmAb. Our studies exemplify the effectiveness of native SEC-MS for characterizing bevacizumab's high molecular weight species at less than 0.3% (based on SEC/UV peak area%) and analyzing the fragment pathway with single amino acid difference for its low molecular weight species at less than 0.05%. Good IEX charge variant separation was obtained with consistent UV and MS profiles. The identity of separated acidic and basic variants were elucidated by native MS at intact level. We successfully differentiated several charge variants including glycoform variants that have not been reported before. In addition, native MS allowed identification of higher molecular weight species as late eluted variants. Overall, the SEC and IEX separation combined with high resolution and high sensitivity native MS, which is significantly different from the traditional RPLC-MS workflows, can be an effective tool that offers valuable insights for us to understand protein therapeutics at native state.
Collapse
Affiliation(s)
- Jun Dai
- NovaBioAssays LLC, 52 Dragon Ct, Suite 3B, Woburn, MA, 01801, USA.
| | - Chengjie Ji
- NovaBioAssays LLC, 52 Dragon Ct, Suite 3B, Woburn, MA, 01801, USA
| |
Collapse
|
21
|
Reid DJ, Thibert S, Zhou M. Dissecting the structural heterogeneity of proteins by native mass spectrometry. Protein Sci 2023; 32:e4612. [PMID: 36851867 PMCID: PMC10031758 DOI: 10.1002/pro.4612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
A single gene yields many forms of proteins via combinations of posttranscriptional/posttranslational modifications. Proteins also fold into higher-order structures and interact with other molecules. The combined molecular diversity leads to the heterogeneity of proteins that manifests as distinct phenotypes. Structural biology has generated vast amounts of data, effectively enabling accurate structural prediction by computational methods. However, structures are often obtained heterologously under homogeneous states in vitro. The lack of native heterogeneity under cellular context creates challenges in precisely connecting the structural data to phenotypes. Mass spectrometry (MS) based proteomics methods can profile proteome composition of complex biological samples. Most MS methods follow the "bottom-up" approach, which denatures and digests proteins into short peptide fragments for ease of detection. Coupled with chemical biology approaches, higher-order structures can be probed via incorporation of covalent labels on native proteins that are maintained at the peptide level. Alternatively, native MS follows the "top-down" approach and directly analyzes intact proteins under nondenaturing conditions. Various tandem MS activation methods can dissect the intact proteins for in-depth structural elucidation. Herein, we review recent native MS applications for characterizing heterogeneous samples, including proteins binding to mixtures of ligands, homo/hetero-complexes with varying stoichiometry, intrinsically disordered proteins with dynamic conformations, glycoprotein complexes with mixed modification states, and active membrane protein complexes in near-native membrane environments. We summarize the benefits, challenges, and ongoing developments in native MS, with the hope to demonstrate an emerging technology that complements other tools by filling the knowledge gaps in understanding the molecular heterogeneity of proteins.
Collapse
Affiliation(s)
- Deseree J. Reid
- Chemical and Biological Signature SciencesPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Stephanie Thibert
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Mowei Zhou
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
22
|
Russell Lewis B, Lawrence R, Hammerschmid D, Reading E. Structural mass spectrometry approaches to understand multidrug efflux systems. Essays Biochem 2023; 67:255-267. [PMID: 36504255 PMCID: PMC10070475 DOI: 10.1042/ebc20220190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Multidrug efflux pumps are ubiquitous across both eukaryotes and prokaryotes, and have major implications in antimicrobial and multidrug resistance. They reside within cellular membranes and have proven difficult to study owing to their hydrophobic character and relationship with their compositionally complex lipid environment. Advances in structural mass spectrometry (MS) techniques have made it possible to study these systems to elucidate critical information on their structure-function relationships. For example, MS techniques can report on protein structural dynamics, stoichiometry, connectivity, solvent accessibility, and binding interactions with ligands, lipids, and other proteins. This information proving powerful when used in conjunction with complementary structural biology methods and molecular dynamics (MD) simulations. In the present review, aimed at those not experts in MS techniques, we report on the current uses of MS in studying multidrug efflux systems, practical considerations to consider, and the future direction of the field. In the first section, we highlight the importance of studying multidrug efflux proteins, and introduce a range of different MS techniques and explain what information they yield. In the second section, we review recent studies that have utilised MS techniques to study and characterise a range of different multidrug efflux systems.
Collapse
Affiliation(s)
- Benjamin Russell Lewis
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Ryan Lawrence
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Dietmar Hammerschmid
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Eamonn Reading
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
23
|
Fiorentino F, Rotili D, Mai A. Native mass spectrometry-directed drug discovery: Recent advances in investigating protein function and modulation. Drug Discov Today 2023; 28:103548. [PMID: 36871843 DOI: 10.1016/j.drudis.2023.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Native mass spectrometry (nMS) is a biophysical method for studying protein complexes and can provide insights into subunit stoichiometry and composition, protein-ligand, and protein-protein interactions (PPIs). These analyses are made possible by preserving non-covalent interactions in the gas phase, thereby allowing the analysis of proteins in their native state. Consequently, nMS has been increasingly applied in early drug discovery campaigns for the characterization of protein-drug interactions and the evaluation of PPI modulators. Here, we discuss recent developments in nMS-directed drug discovery and provide a timely perspective on the possible applications of this technology in drug discovery.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
24
|
Deschamps E, Calabrese V, Schmitz I, Hubert-Roux M, Castagnos D, Afonso C. Advances in Ultra-High-Resolution Mass Spectrometry for Pharmaceutical Analysis. Molecules 2023; 28:2061. [PMID: 36903305 PMCID: PMC10003995 DOI: 10.3390/molecules28052061] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Pharmaceutical analysis refers to an area of analytical chemistry that deals with active compounds either by themselves (drug substance) or when formulated with excipients (drug product). In a less simplistic way, it can be defined as a complex science involving various disciplines, e.g., drug development, pharmacokinetics, drug metabolism, tissue distribution studies, and environmental contamination analyses. As such, the pharmaceutical analysis covers drug development to its impact on health and the environment. Moreover, due to the need for safe and effective medications, the pharmaceutical industry is one of the most heavily regulated sectors of the global economy. For this reason, powerful analytical instrumentation and efficient methods are required. In the last decades, mass spectrometry has been increasingly used in pharmaceutical analysis both for research aims and routine quality controls. Among different instrumental setups, ultra-high-resolution mass spectrometry with Fourier transform instruments, i.e., Fourier transform ion cyclotron resonance (FTICR) and Orbitrap, gives access to valuable molecular information for pharmaceutical analysis. In fact, thanks to their high resolving power, mass accuracy, and dynamic range, reliable molecular formula assignments or trace analysis in complex mixtures can be obtained. This review summarizes the principles of the two main types of Fourier transform mass spectrometers, and it highlights applications, developments, and future perspectives in pharmaceutical analysis.
Collapse
Affiliation(s)
- Estelle Deschamps
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
- ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France
| | - Valentina Calabrese
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100 Villeurbanne, France
| | - Isabelle Schmitz
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
| | - Marie Hubert-Roux
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
| | - Denis Castagnos
- ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
25
|
Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays Biochem 2023; 67:201-213. [PMID: 36807530 PMCID: PMC10070488 DOI: 10.1042/ebc20220169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.
Collapse
|
26
|
From Myricetin to the Discovery of Novel Natural Human ENPP1 Inhibitors: A Virtual Screening, Molecular Docking, Molecular Dynamics Simulation, and MM/GBSA Study. Molecules 2022; 27:molecules27196175. [PMID: 36234712 PMCID: PMC9573336 DOI: 10.3390/molecules27196175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
It was recently revealed that naturally occurring myricetin can inhibit ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which, in turn, can treat ischemic cardiac injury. However, due to myricetin’s poor druggability, its further developments are relatively limited, which necessitates the discovery of novel ENPP1-inhibiting myricetin analogs as alternatives. In this study, the binding model of myricetin with ENPP1 was elucidated by molecular docking and molecular dynamics studies. Subsequently, virtual screening on the self-developed flavonoid natural product database (FNPD), led to the identification of two flavonoid glycosides (Cas No: 1397173-50-0 and 1169835-58-8), as potential ENPP1 inhibitors. Docking scores and MM/GBSA binding energies predicted that they might have higher inhibitory effects than myricetin. This study provides a strong foundation for the future development of ischemic cardiac injury drugs.
Collapse
|
27
|
Ogiso H, Suno R, Kobayashi T, Kawami M, Takano M, Ogasawara M. A Liquid Chromatography-Mass Spectrometry Method to Study the Interaction between Membrane Proteins and Low-Molecular-Weight Compound Mixtures. Molecules 2022; 27:4889. [PMID: 35956840 PMCID: PMC9369908 DOI: 10.3390/molecules27154889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular interaction analysis is an essential technique for the study of biomolecular functions and the development of new drugs. Most current methods generally require manipulation to immobilize or label molecules, and require advance identification of at least one of the two molecules in the reaction. In this study, we succeeded in detecting the interaction of low-molecular-weight (LMW) compounds with a membrane protein mixture derived from cultured cells expressing target membrane proteins by using the size exclusion chromatography-mass spectrometry (SEC-MS) method under the condition of 0.001% lauryl maltose neopentyl glycol as detergent and atmospheric pressure chemical ionization. This method allowed us to analyze the interaction of a mixture of medicinal herbal ingredients with a mixture of membrane proteins to identify the two interacting ingredients. As it does not require specialized equipment (e.g., a two-dimensional liquid chromatography system), this SEC-MS method enables the analysis of interactions between LMW compounds and relatively high-expressed membrane proteins without immobilization or derivatization of the molecules.
Collapse
Affiliation(s)
- Hideo Ogiso
- Toyama Prefectural Institute for Pharmaceutical Research, Imizu 939-0363, Toyama, Japan;
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (R.S.); (T.K.)
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (R.S.); (T.K.)
| | - Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City 734-8553, Hiroshima, Japan; (M.K.); (M.T.)
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City 734-8553, Hiroshima, Japan; (M.K.); (M.T.)
| | - Masaru Ogasawara
- Toyama Prefectural Institute for Pharmaceutical Research, Imizu 939-0363, Toyama, Japan;
| |
Collapse
|
28
|
Favre D, Harmon JF, Zhang A, Miller MS, Kaltashov IA. Decavanadate interactions with the elements of the SARS-CoV-2 spike protein highlight the potential role of electrostatics in disrupting the infectivity cycle. J Inorg Biochem 2022; 234:111899. [PMID: 35716549 PMCID: PMC9183239 DOI: 10.1016/j.jinorgbio.2022.111899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022]
Abstract
Polyoxidometalates (POMs) exhibit a range of biological properties that can be exploited for a variety of therapeutic applications. However, their potential utility as antivirals has been largely overlooked in the ongoing efforts to identify safe, effective and robust therapeutic agents to combat COVID-19. We focus on decavanadate (V10), a paradigmatic member of the POM family, to highlight the utility of electrostatic forces as a means of disrupting molecular processes underlying the SARS-CoV-2 entry into the host cell. While the departure from the traditional lock-and-key approach to the rational drug design relies on less-specific and longer-range interactions, it may enhance the robustness of therapeutic agents by making them less sensitive to the viral mutations. Native mass spectrometry (MS) not only demonstrates the ability of V10 to associate with the receptor-binding domain of the SARS-CoV-2 spike protein, but also provides evidence that this association disrupts the protein binding to its host cell-surface receptor. Furthermore, V10 is also shown to be capable of binding to the polybasic furin cleavage site within the spike protein, which is likely to decrease the effectiveness of the proteolytic processing of the latter (a pre-requisite for the viral fusion with the host cell membrane). Although in vitro studies carried out with SARS-CoV-2 infected cells identify V10 cytotoxicity as a major factor limiting its utility as an antiviral agent, the collected data provide a compelling stimulus for continuing the search for effective, robust and safe therapeutics targeting the novel coronavirus among members of the POM family.
Collapse
Affiliation(s)
- Daniel Favre
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America
| | - Jackson F Harmon
- Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America
| | - Ali Zhang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Matthew S Miller
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America; Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America.
| |
Collapse
|