1
|
Zhou R, Lu D, Mi J, Wang C, Lu W, Wang Z, Li X, Wei C, Zhang H, Ji J, Zhang Y, Zhang D, Wang F. Disulfidptosis-related genes serve as potential prognostic biomarkers and indicate tumor microenvironment characteristics and immunotherapy response in prostate cancer. Sci Rep 2024; 14:14107. [PMID: 38898043 PMCID: PMC11187134 DOI: 10.1038/s41598-024-61679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Disulfidptosis, a newly identified programmed cell death pathway in prostate cancer (PCa), is closely associated with intracellular disulfide stress and glycolysis. This study aims to elucidate the roles of disulfidptosis-related genes (DRGs) in the pathogenesis and progression of PCa, with the goal of improving diagnostic and therapeutic approaches. We analyzed PCa datasets and normal tissue transcriptome data from TCGA, GEO, and MSKCC. Using consensus clustering analysis and LASSO regression, we developed a risk scoring model, which was validated in an independent cohort. The model's predictive accuracy was confirmed through Kaplan-Meier curves, receiver operating characteristic (ROC) curves, and nomograms. Additionally, we explored the relationship between the risk score and immune cell infiltration, and examined the tumor microenvironment and somatic mutations across different risk groups. We also investigated responses to immunotherapy and drug sensitivity. Our analysis identified two disulfidosis subtypes with significant differences in survival, immune environments, and treatment responses. According to our risk score, the high-risk group exhibited poorer progression-free survival (PFS) and higher tumor mutational burden (TMB), associated with increased immune suppression. Functional enrichment analysis linked high-risk features to key cancer pathways, including the IL-17 signaling pathway. Moreover, drug sensitivity analysis revealed varied responses to chemotherapy, suggesting the potential for disulfidosis-based personalized treatment strategies. Notably, we identified PROK1 as a crucial prognostic marker in PCa, with its reduced expression correlating with disease progression. In summary, our study comprehensively assessed the clinical implications of DRGs in PCa progression and prognosis, offering vital insights for tailored precision medicine approaches.
Collapse
Affiliation(s)
- Rongbin Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Medical University, No. 22, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dingjin Lu
- Department of Urology, People's Hospital of Beihai, Beihai, 536000, Guangxi, China
| | - Junhao Mi
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Medical University, No. 22, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chengbang Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenhao Lu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Medical University, No. 22, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zuheng Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Li
- School of Life Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunmeng Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huiyong Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jin Ji
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Urology, Naval Medical Center, Naval Medical Univiersiy, 338 Huaihai West Road, Shanghai, 200433, China
| | - Yifeng Zhang
- Department of Urology, Naval Medical Center, Naval Medical Univiersiy, 338 Huaihai West Road, Shanghai, 200433, China.
| | - Duobing Zhang
- Department of Urology, Suzhou Hospital of Anhui Medical University, 616 The Third Bianyang Road, Yongqiao District, Suzhou, 234000, Anhui, China.
| | - Fubo Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Medical University, No. 22, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- School of Life Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Kang W, Ye C, Yang Y, Lou YR, Zhao M, Wang Z, Gao Y. Identification of anoikis-related gene signatures and construction of the prognosis model in prostate cancer. Front Pharmacol 2024; 15:1383304. [PMID: 38957390 PMCID: PMC11217483 DOI: 10.3389/fphar.2024.1383304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Background One of the primary reasons for tumor invasion and metastasis is anoikis resistance. Biochemical recurrence (BCR) of prostate cancer (PCa) serves as a harbinger of its distant metastasis. However, the role of anoikis in PCa biochemical recurrence has not been fully elucidated. Methods Differential expression analysis was used to identify anoikis-related genes based on the TCGA and GeneCards databases. Prognostic models were constructed utilizing LASSO regression, univariate and multivariate Cox regression analyses. Moreover, Gene Expression Omnibus datasets (GSE70770 and GSE46602) were applied as validation cohorts. Gene Ontology, KEGG and GSVA were utilized to explore biological pathways and molecular mechanisms. Further, immune profiles were assessed using CIBERSORT, ssGSEA, and TIDE, while anti-cancer drugs sensitivity was analyzed by GDSC database. In addition, gene expressions in the model were examined using online databases (Human Protein Atlas and Tumor Immune Single-Cell Hub). Results 113 differentially expressed anoikis-related genes were found. Four genes (EEF1A2, RET, FOSL1, PCA3) were selected for constructing a prognostic model. Using the findings from the Cox regression analysis, we grouped patients into groups of high and low risk. The high-risk group exhibited a poorer prognosis, with a maximum AUC of 0.897. Moreover, larger percentage of immune infiltration of memory B cells, CD8 Tcells, neutrophils, and M1 macrophages were observed in the high-risk group than those in the low-risk group, whereas the percentage of activated mast cells and dendritic cells in the high-risk group were lower. An increased TIDE score was founded in the high-risk group, suggesting reduced effectiveness of ICI therapy. Additionally, the IC50 results for chemotherapy drugs indicated that the low-risk group was more sensitive to most of the drugs. Finally, the genes EEF1A2, RET, and FOSL1 were expressed in PCa cases based on HPA website. The TISCH database suggested that these four ARGs might contribute to the tumor microenvironment of PCa. Conclusion We created a risk model utilizing four ARGs that effectively predicts the risk of BCR in PCa patients. This study lays the groundwork for risk stratification and predicting survival outcomes in PCa patients with BCR.
Collapse
Affiliation(s)
- Wanying Kang
- School of Pharmacy, Fudan University, Shanghai, China
- Life Science and Biopharmaceutical College, Shenyang Pharmaceutical University, Shenyang, China
| | - Chen Ye
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yunyun Yang
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Ru Lou
- School of Pharmacy, Fudan University, Shanghai, China
| | - Mingyi Zhao
- Life Science and Biopharmaceutical College, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Wang
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Huang RH, Ge ZL, Xu G, Zeng QM, Jiang B, Xiao GC, Xia W, Wu YT, Liao YF. Prognosis and diagnosis of prostate cancer based on hypergraph regularization sparse least partial squares regression algorithm. Aging (Albany NY) 2024; 16:9599-9624. [PMID: 38829766 PMCID: PMC11210239 DOI: 10.18632/aging.205889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignant tumor of the male reproductive system, and its incidence has increased significantly in recent years. This study aimed to further identify candidate biomarkers with prognostic and diagnostic significance by integrating gene expression and DNA methylation data from PCa patients through association analysis. MATERIAL AND METHODS To this end, this paper proposes a sparse partial least squares regression algorithm based on hypergraph regularization (HR-SPLS) by integrating and clustering two kinds of data. Next, module 2, with the most significant weight, was selected for further analysis according to the weight of each module related to DNA methylation and mRNAs. Based on the DNA methylation sites in module 2, this paper uses multiple machine learning methods to construct a PCa diagnosis-related model of 10-DNA methylation sites. RESULTS The results of Receiver Operating Characteristic (ROC) analysis showed that the DNA methylation-related diagnostic model we constructed could diagnose PCa patients with high accuracy. Subsequently, based on the mRNAs in module 2, we constructed a prognostic model for 7-mRNAs (MYH11, ACTG2, DDR2, CDC42EP3, MARCKSL1, LMOD1, and MYLK) using multivariate Cox regression analysis. The prognostic model could predict the disease free survival of PCa patients with moderate to high accuracy (area under the curve (AUC) =0.761). In addition, Gene Set EnrichmentAnalysis (GSEA) and immune analysis indicated that the prognosis of patients in the risk group might be related to immune cell infiltration. CONCLUSIONS Our findings may provide new methods and insights for identifying disease-related biomarkers by integrating DNA methylation and gene expression data.
Collapse
Affiliation(s)
- Ruo-Hui Huang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zi-Lu Ge
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gang Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qing-Ming Zeng
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bo Jiang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guan-Cheng Xiao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wei Xia
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu-Ting Wu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yun-Feng Liao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Liu Z, Kuang S, Chen Q. A review focusing on the role of pyroptosis in prostate cancer. Medicine (Baltimore) 2023; 102:e36605. [PMID: 38115248 PMCID: PMC10727670 DOI: 10.1097/md.0000000000036605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
As one of the types of programmed cell death, pyroptosis has become a focus of research in recent years. Numerous studies have shown that pyroptosis plays a regulatory role in tumor cell invasiveness, differentiation, proliferation, and metastasis. It has been demonstrated that pyroptosis is involved in the regulation of signaling pathways implicated in the pathogenesis of prostate cancer (PCa). Furthermore, the loss of expression of pyroptosis-related genes in PCa has been reported, and pyroptosis-related genes have demonstrated a considerable ability in predicting the prognosis of PCa. Therefore, the potential role of pyroptosis in regulating the development of PCa warrants further investigation and attention. In this review, we summarize the basics of the role of pyroptosis and also discuss research into the mechanisms of action associated with pyroptosis in PCa. It is hoped that by exploring the potential of the pyroptosis pathway in intervening in PCa, it will provide a viable direction for the diversification of PCa treatment.
Collapse
Affiliation(s)
- Zhewen Liu
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Shida Kuang
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qihua Chen
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
5
|
Liang L, Shang J, Zhang Y, Xu Y, Zhouteng Y, Wen J, Zhao Y, Feng N, Zhao R. Identification and validation of obesity related genes signature based on microenvironment phenotypes in prostate adenocarcinoma. Aging (Albany NY) 2023; 15:10168-10192. [PMID: 37788005 PMCID: PMC10599753 DOI: 10.18632/aging.205065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/20/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The role of obesity related genes (ORGs) in the immune checkpoint inhibitors (ICIs) treatment of prostate adenocarcinoma (PRAD) has not yet been proved by research. METHODS We comprehensively evaluated the ORGs patterns in PRAD based on tumor microenvironment (TME) phenotypes and immunotherapy efficacies. Then we constructed a ORGs risk score for prognosis and a ORGs signature for accurate prediction of TME phenotype and immunotherapy efficacy in order to evaluate individual patients. RESULTS Two distinct ORGs patterns were generated. The two ORGs patterns were consistent with inflammatory and non-inflammatory TME phenotypes. ORGs patterns had an important role for predicting immunotherapy efficacies. Next, we constructed a ORGs risk score for predicting each patient's prognosis with high performance in TCGA-PRAD. The ORGs risk score could be well verified in the external cohorts including GSE70769 and GSE21034. Then, we developed a ORGs signature and found it was significantly positively correlated with tumor-infiltrating lymphocytes in TCGA-PRAD. We found that each patient in the high-risk ORGs signature group represented a non-inflamed TME phenotype on the single cell level. The patients with high ORGs signature had more sensitivity to immunotherapy. And those ORGs were verified. CONCLUSIONS ORGs pattern depicts different TME phenotypes in PRAD. The ORGs risk score and ORGs signature have an important role for predicting prognosis and immunotherapy efficacies.
Collapse
Affiliation(s)
- Linghui Liang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University and Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Jinwei Shang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuwei Zhang
- Nantong University Medical School, Nantong, Jiangsu, China
| | - Yuxin Xu
- Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | - Yuxin Zhao
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University and Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Ruizhe Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Zhao M, Guo J, Gao QH, Wang H, Wang F, Wang ZR, Liu SJ, Deng YJ, Zhao ZW, Zhang YY, Yu WX. Relationship between pyroptosis-mediated inflammation and the pathogenesis of prostate disease. Front Med (Lausanne) 2023; 10:1084129. [PMID: 36744134 PMCID: PMC9892550 DOI: 10.3389/fmed.2023.1084129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
The largest solid organ of the male genitalia, the prostate gland, is comprised of a variety of cells such as prostate epithelial cells, smooth muscle cells, fibroblasts, and endothelial cells. Prostate diseases, especially prostate cancer and prostatitis, are often accompanied by acute/chronic inflammatory responses or even cell death. Pyroptosis, a cell death distinct from necrosis and apoptosis, which mediate inflammation may be closely associated with the development of prostate disease. Pyroptosis is characterized by inflammasome activation via pattern recognition receptors (PRR) upon recognition of external stimuli, which is manifested downstream by translocation of gasdermin (GSDM) protein to the membrane to form pores and release of inflammatory factors interleukin (IL)-1β and IL-18, a process that is Caspase-dependent. Over the past number of years, many studies have investigated the role of inflammation in prostate disease and have suggested that pyroptosis may be an important driver. Understanding the precise mechanism is of major consequence for the development of targeted therapeutic strategies. This review summarizes the molecular mechanisms, regulation, and cellular effects of pyroptosis briefly and then discuss the current pyroptosis studies in prostate disease research and the inspiration for us.
Collapse
Affiliation(s)
- Ming Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-He Gao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zi-Rui Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng-Jing Liu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying-Jun Deng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zi-Wei Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Yang Zhang
- Department of Andrology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Xiao Yu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Wen-Xiao Yu,
| |
Collapse
|
7
|
Jiang Z, Wang X, Huang J, Li G, Li S. Pyroptosis-based risk score predicts prognosis and drug sensitivity in lung adenocarcinoma. Open Med (Wars) 2023; 18:20230663. [PMID: 36941988 PMCID: PMC10024350 DOI: 10.1515/med-2023-0663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 03/14/2023] Open
Abstract
Pyroptosis is a recently identified form of programmed cell death; however, its role in lung adenocarcinoma (LUAD) remains unclear. Therefore, we set out to explore the prognostic potential of pyroptosis-related genes in LUAD. The pyroptosis-related risk score (PRRS) was developed by least absolute shrinkage and selection operator Cox regression and multivariate Cox regression. We found that PRRS was an independent prognostic factor for LUAD. LUAD patients in the high-PRRS group showed a significantly shorter overall survival (OS) and enriched in cell proliferation-related pathways. Then pathway enrichment analyses, mutation profile, tumor microenvironment, and drug sensitivity analysis were further studied in PRRS stratified LUAD patients. Tumor purity (TP) analyses revealed that L-PRRS LUAD patients had a lower TP, and patients in L-TP + L-PRRS subgroup had the most prolonged OS. Mutation analyses suggested that the L-PRRS LUAD patients had a lower tumor mutation burden (TMB), and patients in H-TMB + L-PRRS subgroup had the most prolonged OS. Drug sensitivity analyses showed that PRRS was significantly negatively correlated with the sensitivity of cisplatin, besarotene, etc., while it was significantly positively correlated with the sensitivity of kin001-135. Eventually, a nomogram was constructed based on PRRS and clinical characters of LUAD. Overall, the pyroptosis-related signature is helpful for prognostic prediction and in guiding treatment for LUAD patients.
Collapse
Affiliation(s)
- Zhengsong Jiang
- Department of Laboratory Medicine, The First Hospital of Jiujiang, Jiujiang, Jiangxi, China
| | - Xiang Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | | | - Guoyin Li
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, 710061, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Shangfu Li
- Department of Oncology, Yueyang Second People’s Hospital, Yueyang, Hunan, 414022, China
| |
Collapse
|
8
|
Xiao X, Li J, Wan S, Wu M, Li Z, Tian J, Mi J. A novel signature based on pyroptosis-related genes for predicting prognosis and treatment response in prostate cancer patients. Front Genet 2022; 13:1006151. [PMID: 36386841 PMCID: PMC9648539 DOI: 10.3389/fgene.2022.1006151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2022] [Indexed: 10/04/2023] Open
Abstract
Background: Pyroptosis is a form of programmed cell death accompanied by specific inflammatory and immune responses, and it is closely related to the occurrence and progression of various cancers. However, the roles of pyroptosis-related genes (PRGs) in the prognosis, treatment response, and tumor microenvironment (TME) of prostate cancer (PCa) remain to be investigated. Methods: The mRNA expression data and clinical information of PCa patients were obtained from the Cancer Genome Atlas database (TCGA) and the cBioPortal for Cancer Genomics website, and the 52 PRGs were obtained from the published papers. The univariate, multivariate, and LASSO Cox regression algorithms were used to obtain prognostic hub PRGs. Meanwhile, qRT-PCR was used to validate the expression of hub genes between PCa lines and normal prostate epithelial cell lines. We then constructed and validated a risk model associated with the patient's disease-free survival (DFS). Finally, the relationships between risk score and clinicopathological characteristics, tumor immune microenvironment, and drug treatment response of PCa were systematically analyzed. Results: A prognostic risk model was constructed with 6 hub PRGs (CHMP4C, GSDMB, NOD2, PLCG1, CYCS, GPX4), and patients were divided into high and low-risk groups by median risk score. The risk score was confirmed to be an independent prognostic factor for PCa in both the training and external validation sets. Patients in the high-risk group had a worse prognosis than those in the low-risk group, and they had more increased somatic mutations, higher immune cell infiltration and higher expression of immune checkpoint-related genes. Moreover, they were more sensitive to cell cycle-related chemotherapeutic drugs and might be more responsive to immunotherapy. Conclusion: In our study, pyroptosis played a significant role in the management of the prognosis and tumor microenvironment of PCa. Meanwhile, the established model might help to develop more effective individual treatment strategies.
Collapse
Affiliation(s)
- Xi Xiao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianpeng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Mingzhe Wu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zonglin Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China
| | - Jun Mi
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China
| |
Collapse
|
9
|
Yu J, Tang R, Li J. Identification of pyroptosis-related lncRNA signature and AC005253.1 as a pyroptosis-related oncogene in prostate cancer. Front Oncol 2022; 12:991165. [PMID: 36248980 PMCID: PMC9556775 DOI: 10.3389/fonc.2022.991165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pyroptosis and prostate cancer (PCa) are closely related. The role of pyroptosis-related long non-coding RNAs (lncRNAs) (PRLs) in PCa remains elusive. This study aimed to explore the relationship between PRL and PCa prognosis. Methods Gene expression and clinical signatures were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. A PRL risk prediction model was established by survival random forest analysis and least absolute shrinkage and selection operator regression. Functional enrichment, immune status, immune checkpoints, genetic mutations, and drug susceptibility analyses related to risk scores were performed by the single-sample gene set enrichment analysis, gene set variation analysis, and copy number variation analysis. PRL expression was verified in PCa cells. Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine, wound healing, transwell, and Western blotting assay were used to detect the proliferation, migration, invasion, and pyroptosis of PCa cells, respectively. Results Prognostic features based on six PRL (AC129507.1, AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and LINC01852) were constructed, and patients in the high-score group had a worse prognosis than those in the low-score group. This feature was determined to be independent by Cox regression analysis, and the area under the curve of the 1-, 3-, and 5-year receiver operating characteristic curves in the testing cohort was 1, 0.93, and 0.92, respectively. Moreover, the external cohort validation confirmed the robustness of the PRL risk prediction model. There was a clear distinction between the immune status of the two groups. The expression of multiple immune checkpoints was also reduced in the high-score group. Gene mutation proportion in the high-score group increased, and the sensitivity to drugs increased significantly. Six PRLs were upregulated in PCa cells. Silencing of AC005253.1 inhibited cell proliferation, migration, and invasion in DU145 and PC-3 cells. Moreover, silencing of AC005253.1 promoted pyroptosis and inflammasome AIM2 expression. Conclusions Overall, we constructed a prognostic model of PCa with six PRLs and identified their expression in PCa cells. The experimental verification showed that AC005253.1 could affect the proliferation, migration, and invasion abilities of PCa cells. Meanwhile, AC005253.1 may play an important role in PCa by affecting pyroptosis through the AIM2 inflammasome. This result requires further research for verification.
Collapse
Affiliation(s)
- JiangFan Yu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Rui Tang
- Department of Rheumatology and Immunology, Second Xiangya Hospital, Central South University, Changsha, China
| | - JinYu Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: JinYu Li,
| |
Collapse
|