1
|
Nee Shelly Aggarwal SS, Kaur D, Saluja D, Srivastava K. Repurposed drugs as PCSK9-LDLR disruptors for lipid lowering and cardiovascular disease therapeutics. Mol Divers 2024:10.1007/s11030-024-11063-9. [PMID: 39645639 DOI: 10.1007/s11030-024-11063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
The PCSK9 protein binds to LDL receptors (LDLR), leading to their degradation and reduced expression on cell surfaces. This decreased the clearance of LDL cholesterol from the bloodstream, thereby increasing the risk of coronary artery diseases. Targeting the PCSK9-LDL receptor interaction is crucial for regulating LDL cholesterol levels and preventing cardiovascular disease. This study aims to screen low molecular weight inhibitors to disrupt the PCSK9-LDLR interaction. We employed a comprehensive approach combining high-throughput virtual screening of DrugBank database, followed by molecular docking studies using CDOCKER and flexible docking methods. The top four lead compounds were further validated through molecular dynamics (MD) simulations and binding free energy calculations using MM-PBSA. Finally, the in vitro assay confirmed that Benazepril and Quinapril exhibited the highest potency as PCSK9-LDLR disruptors among the top candidates. These lead compounds have the potential to be repurposed as lipid-lowering agents for the treatment of cardiovascular diseases, offering a promising therapeutic strategy.
Collapse
Affiliation(s)
| | - Divpreet Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Daman Saluja
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Kamna Srivastava
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Wu Y, Ma L, Li X, Yang J, Rao X, Hu Y, Xi J, Tao L, Wang J, Du L, Chen G, Liu S. The role of artificial intelligence in drug screening, drug design, and clinical trials. Front Pharmacol 2024; 15:1459954. [PMID: 39679365 PMCID: PMC11637864 DOI: 10.3389/fphar.2024.1459954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
The role of computational tools in drug discovery and development is becoming increasingly important due to the rapid development of computing power and advancements in computational chemistry and biology, improving research efficiency and reducing the costs and potential risks of preclinical and clinical trials. Machine learning, especially deep learning, a subfield of artificial intelligence (AI), has demonstrated significant advantages in drug discovery and development, including high-throughput and virtual screening, ab initio design of drug molecules, and solving difficult organic syntheses. This review summarizes AI technologies used in drug discovery and development, including their roles in drug screening, design, and solving the challenges of clinical trials. Finally, it discusses the challenges of drug discovery and development based on AI technologies, as well as potential future directions.
Collapse
Affiliation(s)
- Yuyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lijing Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xinyi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jingpeng Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xinyu Rao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yiru Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jingyi Xi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lin Tao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianjun Wang
- Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lailing Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Tang L, Ruan Y, Wang B, Zhang M, Xue J, Wang T. Erianin inhibits the progression of DDP-resistant lung adenocarcinoma by regulating the Wnt/β-catenin pathway and activating the caspase-3 for apoptosis in vitro and in vivo. Hereditas 2024; 161:48. [PMID: 39605083 PMCID: PMC11600767 DOI: 10.1186/s41065-024-00351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Platinum-based chemotherapy is one of the main treatments for lung adenocarcinoma (LUAD). However, the toxic side effects and drug resistance of chemotherapeutic drugs on normal cells are still a thorny problem in clinical treatment. Dendrobium is one of the three largest genera of Orchidaceous family, which has ornamental and medicinal value. Dendrobium is mainly distributed in the tropics and subtropics of South Asia, Oceania and other regions, with 1547 species of Dendrobium currently known. In China, "Shi hu" and "Tie pi shi hu" are well-known traditional medicines and have been included in the Chinese Pharmacopoeia (Editorial Board of Chinese Pharmacopoeia, 2020). Erianin is a natural product isolated from Dendrobium and is considered as a potential anticancer molecule due to its remarkable anti-tumor effects through various mechanisms, among which induced cancer cell apoptosis, inhibited invasion and migration. This study preliminarily explored the mechanism of Erianin inhibiting the progression of cisplatin (DDP) resistant LUAD in vivo and in vitro. METHODS The effect of Erianin on the proliferation of DDP-resistant LUAD cells was detected by CCK-8 assay, wound healing assay and cloning assay. Transwell assay was used to evaluate the effect of Erianin on cell invasion and migration. The changes of cell cycle and apoptosis were detected by flow cytometry and TUNEL assay. Finally, the effects of Erianin on cell function and signaling pathway-related protein expression in vivo and in vitro were examined based on the enrichment analysis. RESULTS Erianin could inhibit the proliferation, invasion and migration, induce apoptosis, altered cell cycle of DDP-resistant LUAD cells, and reverse the resistance to DDP. Western blotting results showed that Erianin exerted its anti-tumor effects by regulating the Wnt/β-catenin cascade in DDP-resistant LUAD cells. CONCLUSION Erianin may exerted its anti-tumor effect in DDP-resistant LUAD cells by regulating the Wnt3/β-Catenin/Survivin/Bcl-2/Caspase-3/Cyclin D1 axis.
Collapse
Affiliation(s)
- Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yiling Ruan
- Department of General practice, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Beibei Wang
- Department of General practice, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Xue
- Department of General Practice, Suixi County Hospital, Huaibei, Anhui, China.
| | - Tong Wang
- Department of General practice, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Wu C, He J, Li H, Zhang S, Wang S, Dong X, Yan L, Wang R, Chen J, Liu Z, Zhang L, Jiang Z, Wang X, Gu Y, Ji J. Design, synthesis and antitumor activity of novel 4-oxobutanamide derivatives. Bioorg Med Chem Lett 2024; 113:129978. [PMID: 39341397 DOI: 10.1016/j.bmcl.2024.129978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
To find highly effective and low-toxicity antitumor drugs to overcome the challenge of cancer, we designed and synthesized a series of novel 4-oxobutanamide derivatives using the principle of molecular hybridization and tested the antiproliferative ability of the title compounds against human cervical carcinoma cells (HeLa), human breast carcinoma cells (MDA-MB-231) and human kidney carcinoma cells (A498). Among them, N1-(4-methoxybenzyl)-N4-(4-methoxyphenyl)-N1-(3,4,5-trimethoxyphenyl) succinimide DN4 (IC50 = 1.94 µM) showed the best proliferation activity on A498, superior to the positive control paclitaxel (IC50 = 8.81 µM) and colchicine (IC50 = 7.17 µM). Compound DN4 not only inhibited the proliferation, adhesion and invasion of A498, but also inhibited angiogenesis and tumor growth in a dose-dependent manner in the xenograft model of A498 cells. In addition, we also predicted the physicochemical properties and toxicity (ADMET) of these derivatives, and the results suggested that these derivatives may have the absorption, distribution, metabolism, excretion, and toxicity properties of drug candidates. Thus, compound DN4 may be a promising drug candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Caiju Wu
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingliang He
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanxue Li
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siyi Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siqi Wang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue Dong
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lili Yan
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ruiying Wang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiayin Chen
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiyu Liu
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Luyao Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zirui Jiang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoshuo Wang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yifei Gu
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China; Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jing Ji
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
5
|
Liu S, Teng F, Lu Y, Zhu Y, Liang X, Wu F, Liu J, Zhou W, Su C, Cao Y. Ethoxy-erianin phosphate inhibits angiogenesis in colorectal cancer by regulating the TMPO-AS1/miR-126-3p/PIK3R2 axis and inactivating the PI3k/AKT signaling pathway. BMC Cancer 2024; 24:1275. [PMID: 39402462 PMCID: PMC11476319 DOI: 10.1186/s12885-024-12893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy, with increasing prevalence and mortality. How the ethoxy-erianin phosphate (EBTP) mediates CRC development remains unclear. Therefore, the current study evaluated the effects of EBTP on the proliferation, migration, and angiogenesis of CRC cells using CCK-8, Wound-healing, Transwell, and Tube formation assays. RNA sequencing and molecular docking techniques helped predict that EBTP could inhibit angiogenesis by regulating PIK3R2 expression while clarifying the mechanism behind EBTP-mediated CRC angiogenesis. Subsequently, several in vitro experiments indicated that PIK3R2 overexpression significantly improved the proliferation, migration, and angiogenesis of CRC cells while knocking down PIK3R2 expression inhibited their proliferation, migration, and angiogenesis. Simultaneously, PIK3R2 expression in CRC cells gradually decreased with increased EBTP concentration and action duration. Moreover, PIK3R2 overexpression in CRC cells could reverse the inhibitory EBTP effect in angiogenesis. Mouse experiments also depicted that EBTP inhibited CRC angiogenesis by down-regulating PIK3R2 expression. In addition, EBTP could inhibit PI3K/AKT pathway activity and indirectly control PIK3R2 expression through the lncRNA TMPO-AS1/miR-126-3p axis. Our findings highlighted that EBTP could inhibit CRC angiogenesis using the TMPO-AS1/miR-126-3p/PIK3R2/PI3k/AKT axis, providing a novel strategy for anti-angiogenic therapy in CRC.
Collapse
Affiliation(s)
- Shaoqun Liu
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Fei Teng
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Yuxin Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yanqing Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Liang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- Zhejiang Guangsha Vocational and Technical University of Construction, Jinhua, China
| | - Jianwen Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Zhejiang Guangsha Vocational and Technical University of Construction, Jinhua, China
| | - Wenming Zhou
- Department of Endoscope Center, Minhang Hospital, Fudan University, Shanghai, China.
| | - Chang Su
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Yiou Cao
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Souza RP, Pimentel VD, de Sousa RWR, Sena EP, da Silva ACA, Dittz D, Ferreira PMP, de Oliveira AP. Non-clinical investigations about cytotoxic and anti-platelet activities of gamma-terpinene. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8145-8160. [PMID: 38801455 DOI: 10.1007/s00210-024-03173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Gamma-terpinene (γ-TPN) is a cyclohexane monoterpene isolated from plant essential oils, such as tea tree (Melaleuca alternifolia), oregano (Origanum vulgare), rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris Marchand), and eucalyptus (Eucalyptus sp.). Terpenes are widely studied molecules pharmacologically active on the cardiovascular system, hemostasis, and antioxidant actions. Herein, it was investigated the cytotoxic and antiplatelet activity of γ-TPN using different non-clinical laboratory models. For in silico evaluation, the PreADMET, SwissADME, and SwissTargetPrediction softwares were used. Molecular docking was performed using the AutoDockVina and BIOVIA Discovery Studio databases. The cytotoxicity of γ-TPN was analyzed by the MTT assay upon normal murine endothelial SVEC4-10 and fibroblast L-929 cells. Platelet aggregation was evaluated with platelet-rich (PRP) and platelet-poor (PPP) plasma from spontaneously hypertensive rats (SHR), in addition to SVEC4-10 cells pre-incubated with γ-TPN (50, 100, and 200 µM) for 24 h. SHR animals were pre-treated by gavage with γ-TPN for 7 days and divided into four groups (negative control, 25, 50, and 100 mg/kg). Blood samples were collected to measure nitrite using the Griess reagent. Gamma-TPN proved to be quite lipid-soluble (Log P = +4.50), with a qualified profile of similarity to the drug, good bioavailability, and adequate pharmacokinetics. It exhibited affinity mainly for the P2Y12 receptor (6.450 ± 0.232 Kcal/mol), moderate cytotoxicity for L-929 (CC50 = 333.3 µM) and SVEC 4-10 (CC50 = 366.7 µM) cells. The presence of γ-TPN in SVEC 4-10 cells was also able to reduce platelet aggregation by 51.57 and 44.20% at lower concentrations (50 and 100 µM, respectively). Then, γ-TPN has good affinity with purinergic receptors and an effect on the reversal of platelet aggregation and oxidative stress, being promising and safe for therapeutic targets and subsequent studies on the control of thromboembolic diseases.
Collapse
Affiliation(s)
- Railson Pereira Souza
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Cardiovascular Pharmacology (Lafac), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Vinícius Duarte Pimentel
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Rayran Walter Ramos de Sousa
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Emerson Portela Sena
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Cardiovascular Pharmacology (Lafac), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Alda Cássia Alves da Silva
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Dalton Dittz
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Antineoplastic Pharmacology (Lafan), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Aldeídia Pereira de Oliveira
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil.
- Laboratory of Cardiovascular Pharmacology (Lafac), Federal University of Piauí, Teresina, 64049-550, Brazil.
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil.
| |
Collapse
|
7
|
Feifei W, Wenrou S, Jinyue S, Qiaochu D, Jingjing L, Jin L, Junxiang L, Xuhui L, Xiao L, Congfen H. Anti-ageing mechanism of topical bioactive ingredient composition on skin based on network pharmacology. Int J Cosmet Sci 2024. [PMID: 39246148 DOI: 10.1111/ics.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE To elucidate the anti-ageing mechanism of the combination of eight ingredients on the skin from a multidimensional view of the skin. METHODS The target pathway mechanisms of composition to delay skin ageing were investigated by a network pharmacology approach and experimentally validated at three levels: epidermal, dermal, and tissue. RESULTS We identified 24 statistically significant skin ageing-related pathways, encompassing crucial processes such as epidermal barrier repair, dermal collagen and elastin production, inhibition of reactive oxygen species (ROS), as well as modulation of acetylcholine and acetylcholine receptor binding. Furthermore, our in vitro experimental findings exhibited the following outcomes: the composition promotes fibroblast proliferation and the expression of barrier-related genes in the epidermis; it also stimulated the expression of collagen I, collagen III, and elastic fibre while inhibiting ROS and β-Gal levels in HDF cells within the dermis. Additionally, Spilanthol in the Acmella oleracea extract contained in the composition demonstrated neuro-relaxing activity in Zebrafish embryo, suggesting its potential as an anti-wrinkle ingredient at the hypodermis level. CONCLUSIONS In vitro experiments validated the anti-ageing mechanism of composition at multiple skin levels. This framework can be extended to unravel the functional mechanisms of other clinically validated compositions, including traditional folk recipes utilized in cosmeceuticals.
Collapse
Affiliation(s)
- Wang Feifei
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Su Wenrou
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Sun Jinyue
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Du Qiaochu
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Li Jingjing
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Liu Jin
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Li Junxiang
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Harvest Biotech (Zhejiang) Co., Ltd., Zhejiang, China
| | - Li Xuhui
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Lin Xiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - He Congfen
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
Hu A, Li K. Erianin Impedes the Proliferation and Metastatic Migration Through Suppression of STAT-3 Phosphorylation in Human Esophageal Cancer Cells. Appl Biochem Biotechnol 2024; 196:5859-5874. [PMID: 38165593 DOI: 10.1007/s12010-023-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
In this study, we have investigated erianin, a natural phenolic drug that impedes proliferation and metastatic migration through suppression of STAT-3 phosphorylation in human esophageal cancer cells. Eca-109 cells were treated with different concentrations of erianin (4, 8, 12 µM) for 24 h, and then cell proliferation, apoptosis, and metastatic markers were evaluated. Erianin-induced cytotoxicity and cell proliferation were examined using MTT and crystal violet staining techniques. The measurement of reactive oxygen species (ROS) and the study of apoptotic changes were conducted through flow cytometry. Furthermore, protein expression analyses via western blotting included an evaluation of JAK-STAT3, cell survival, cell cycle, proliferation, and apoptosis-related proteins. Moreover, erianin treatment-associated MMP expressions were studied by RT-PCR. In this study, erianin treatment induces substantial cytotoxicity and ROS production based on the concentrations in Eca-109 cells. Moreover, erianin inhibits the MAPK phosphorylation, proliferation, and metastatic protein in Eca-109 cells. STAT-3 is a crucial transcriptional factor that regulates numerous downstream proteins, such as proliferation, anti-apoptosis, and metastatic proteins. In this study, erianin treatment inhibited the protein expression of IL-6, IL-10, JAK-1, and p-STAT-3 expressions leading to induce apoptosis in Eca-109 cells. Moreover, erianin inhibited the expression of proliferation, metastatic, and anti-apoptotic markers in Eca-109 cells. Hence, erianin suppressed the JAK/STAT-3 signaling pathway and demonstrates potential as a chemotherapeutic agent for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Anxi Hu
- Department of Thoracic Surgery, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
| | - Kunkun Li
- Department of Gastroenterology, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou City, 450001, Henan Province, China.
| |
Collapse
|
9
|
Zeng W, Wang Y, Gao R, Wen H, Yu M. Unlocking the Reverse Targeting Mechanisms of Cannabidiol: Unveiling New Therapeutic Avenues. J Med Chem 2024; 67:14574-14585. [PMID: 39092992 DOI: 10.1021/acs.jmedchem.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, have attracted a significant amount of attention due to their biological activities. This study identified GPR18 as the target of partial agonist CBD activating the p42/p44 MAPK pathway leading to migration of endometrial epithelial cells. Induced fit docking (IFD) showed that the affinity of THC for GPR18 is higher than that of CBD, and molecular dynamics (MD) simulations showed that CBD-GPR18 complexes at 130/200 ns might have stable conformations, potentially activating GPR18 by changing the distances of key residues in its active pocket. In contrast, THC maintains "metastable" conformations, generating a "shrinking space" leading to full agonism of THC by adding mechanical constraints in GPR18's active pocket. Steered molecular dynamics (SMD) revealed GPR18's active pocket was influenced more by CBD's partial agonism compared with THC. This combined IFD-MD-SMD method may be used to explain the mechanism of activation of partial or full agonists of GPR18.
Collapse
Affiliation(s)
- Wen Zeng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Yifei Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hongliang Wen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Mingjia Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Mansuer M, Zhou L, Wang C, Gao L, Jiang Y. Erianin induces ferroptosis in GSCs via REST/LRSAM1 mediated SLC40A1 ubiquitination to overcome TMZ resistance. Cell Death Dis 2024; 15:522. [PMID: 39039049 PMCID: PMC11263394 DOI: 10.1038/s41419-024-06902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
In recent studies, erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, has exhibited notable anticancer properties. Ferroptosis, a novel form of programmed cell death, holds potential as a strategy to overcome Temozolomide (TMZ) resistance in glioma by inducing ferroptosis in TMZ-resistant glioma cells. Here, utilizing various phenotyping experiments, including cell counting kit-8 (CCK-8) assays, EdU assays, transwell assays, neurosphere formation assays and extreme limiting dilution (ELDA) assays, we demonstrated that erianin exerts its anticancer activity on both TMZ sensitive and TMZ-resistant glioma stem cells (GSCs). Furthermore, we made an exciting discovery that erianin enhances TMZ sensitivity in TMZ-resistant GSCs. Subsequently, we demonstrated that erianin induced ferroptosis in TMZ-resistant GSCs and enhances TMZ sensitivity through inducing ferroptosis, which was confirmed by intracellular measurements of ROS, GSH, and MDA, as well as through the use of BODIPY (581/591) C11 and transmission electron microscopy. Conversely, the ferroptosis inhibitor ferrostatin-1 (Fer-1) blocked the effects of erianin. The underlying mechanism of ferroptosis induced by erianin was further explored through co-immunoprecipitation (Co-IP) assays, ubiquitination assays, protein stability assessments, chromatin immunoprecipitation (ChIP) assays and luciferase reporter gene assays. We found that erianin specifically targets REST, inhibiting its transcriptional repression function without altering its expression levels. Consequently, this suppression of REST's role leads to an upregulation of LRSAM1 expression. In turn, LRSAM1 ubiquitinates and degrades SLC40A1, a protein that inhibits ferroptosis by exporting ferrous ions. By downregulating SLC40A1, erianin ultimately induces ferroptosis in TMZ-resistant GSCs. Taken together, our research demonstrates that the natural product erianin inhibits the malignant phenotype of GSCs and increases the sensitivity of TMZ in TMZ-resistant GSCs by inducing ferroptosis. These findings suggest erianin as a prospective compound for the treatment of TMZ-resistant glioma.
Collapse
Affiliation(s)
- Maierdan Mansuer
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Zhou
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
11
|
Zúñiga-Hernández SR, García-Iglesias T, Macías-Carballo M, Pérez-Larios A, Gutiérrez-Mercado YK, Camargo-Hernández G, Rodríguez-Razón CM. A Bioinformatic Assay of Quercetin in Gastric Cancer. Int J Mol Sci 2024; 25:7934. [PMID: 39063176 PMCID: PMC11277512 DOI: 10.3390/ijms25147934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric cancer (GC) remains a significant global health challenge, with high mortality rates, especially in developing countries. Current treatments are invasive and have considerable risks, necessitating the exploration of safer alternatives. Quercetin (QRC), a flavonoid present in various plants and foods, has demonstrated multiple health benefits, including anticancer properties. This study investigated the therapeutic potential of QRC in the treatment of GC. We utilized advanced molecular techniques to assess the impact of QRC on GC cells, examining its effects on cellular pathways and gene expression. Our findings indicate that QRC significantly inhibits GC cell proliferation and induces apoptosis, suggesting its potential as a safer therapeutic option for GC treatment. Further research is required to validate these results and explore the clinical applications of QRC in cancer therapy.
Collapse
Affiliation(s)
- Sergio Raúl Zúñiga-Hernández
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Trinidad García-Iglesias
- Instituto de Investigación de Cáncer en la Infancia y Adolescencia, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico;
| | - Monserrat Macías-Carballo
- Laboratorio de Biociencias, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Alejandro Pérez-Larios
- Laboratorio de Nanomateriales, Agua y Energia, Departamento de Ingenierias, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Yanet Karina Gutiérrez-Mercado
- Laboratorio Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Gabriela Camargo-Hernández
- Instituto de Investigación en Ciencias Médicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Christian Martín Rodríguez-Razón
- Laboratorio de Experimentación Animal (Bioterio), Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico
| |
Collapse
|
12
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Khan F, Pandey P, Verma M, Ramniwas S, Lee D, Moon S, Park MN, Upadhyay TK, Kim B. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy. Biomed Pharmacother 2024; 173:116363. [PMID: 38479184 DOI: 10.1016/j.biopha.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Ferroptosis, a novel form of regulated cell death characterized by dependence on iron and lipid peroxidation, has been implicated in a wide range of clinical conditions including neurological diseases, cardiovascular disorders, acute kidney failure, and various types of cancer. Therefore, it is critical to suppress cancer progression and proliferation. Ferroptosis can be triggered in cancer cells and some normal cells by synthetic substances, such as erastin, Ras-selective lethal small molecule-3, or clinical pharmaceuticals. Natural bioactive compounds are traditional drug discovery tools, and some have been therapeutically used as dietary additives or pharmaceutical agents against various malignancies. The fact that natural products have multiple targets and minimal side effects has led to notable advances in anticancer research. Research has indicated that ferroptosis can also be induced by natural compounds during cancer treatment. In this review, we focused on the most recent developments in emerging molecular processes and the significance of ferroptosis in cancer. To provide new perspectives on the future development of ferroptosis-related anticancer medications, we also provide a summary of the implications of natural phytochemicals in triggering ferroptosis through ROS production and ferritinophagy induction in a variety of malignancies.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pratibha Pandey
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India; Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Dain Lee
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon 21390, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara 391760, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| |
Collapse
|
14
|
Zúñiga-Hernández SR, García-Iglesias T, Macías-Carballo M, Pérez-Larios A, Gutiérrez-Mercado YK, Camargo-Hernández G, Rodríguez-Razón CM. Targets and Effects of Common Biocompounds of Hibiscus sabdariffa (Delphinidin-3-Sambubiosid, Quercetin, and Hibiscus Acid) in Different Pathways of Human Cells According to a Bioinformatic Assay. Nutrients 2024; 16:566. [PMID: 38398890 PMCID: PMC10893457 DOI: 10.3390/nu16040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The utilization of food as a therapeutic measure for various ailments has been a prevalent practice throughout history and across different cultures. This is exemplified in societies where substances like Hibiscus sabdariffa have been employed to manage health conditions like hypertension and elevated blood glucose levels. The inherent bioactive compounds found in this plant, namely, delphinidin-3-sambubioside (DS3), quercetin (QRC), and hibiscus acid (HA), have been linked to various health benefits. Despite receiving individual attention, the specific molecular targets for these compounds remain unclear. In this study, computational analysis was conducted using bioinformatics tools such as Swiss Target Prediction, ShinnyGo 0.77, KEGG, and Stringdb to identify the molecular targets, pathways, and hub genes. Supplementary results were obtained through a thorough literature search in PubMed. DS3 analysis revealed potential genetic alterations related to the metabolism of nitrogen and glucose, inflammation, angiogenesis, and cell proliferation, particularly impacting the PI3K-AKT signaling pathway. QRC analysis demonstrated interconnected targets spanning multiple pathways, with some overlap with DS3 analysis and a particular focus on pathways related to cancer. HA analysis revealed distinct targets, especially those associated with pathways related to the nervous system. These findings emphasize the necessity for focused research on the molecular effects of DS3, QRC, and HA, thereby providing valuable insights into potential therapeutic pathways.
Collapse
Affiliation(s)
- Sergio R. Zúñiga-Hernández
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Trinidad García-Iglesias
- Instituto de Investigación de Cáncer en la Infancia y Adolescencia, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico;
| | - Monserrat Macías-Carballo
- Instituto de Investigación en Ciencias Médicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Alejandro Pérez-Larios
- Laboratorio de Nanomateriales, Agua y Energia, Departamento de Ingenierias, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Yanet Karina Gutiérrez-Mercado
- Laboratorio Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Gabriela Camargo-Hernández
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Christian Martin Rodríguez-Razón
- Laboratorio de Experimentación Animal (Bioterio), Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico
| |
Collapse
|
15
|
Lv J, Wang Z, Liu H. Erianin suppressed lung cancer stemness and chemotherapeutic sensitivity via triggering ferroptosis. ENVIRONMENTAL TOXICOLOGY 2024; 39:479-486. [PMID: 37209271 DOI: 10.1002/tox.23832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
The previous research has focused on the suppressive effects of Erianin on tumor progression, but its impact on cancer stemness has not been reported. This study aimed to investigate the effects of Erianin on lung cancer stemness. First, we screened various concentrations Erianin to ensure that it did not affect lung cancer cell viability. Subsequently, we found that Erianin significantly attenuated lung cancer stemness through various analyses, including qRT-PCR, western blot, sphere-formation, and ALDH activity detection. Furthermore, Erianin was shown to enhance chemosensitivity of lung cancer cells. Mechanistically, three inhibitors (cell apoptosis inhibitor, necrosis inhibitor, and ferroptosis inhibitor) were added into lung cancer cells with Erianin treatment, respectively, and we found that Erianin mainly suppressed lung cancer stemness through ferroptosis. Taken together, this study reveals that Erianin has the potential to suppress lung cancer stemness and could be a valuable chemotherapeutic enhancer for lung cancer.
Collapse
Affiliation(s)
- Jian Lv
- Department of Thoracic Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ze Wang
- Department of Thoracic Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hongchao Liu
- Department of Interventional Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Zhu Z, Liu Y, Zeng J, Ren S, Wei L, Wang F, Sun X, Huang Y, Jiang H, Sui X, Jin W, Jin L, Sun X. Diosbulbin C, a novel active ingredient in Dioscorea bulbifera L. extract, inhibits lung cancer cell proliferation by inducing G0/G1 phase cell cycle arrest. BMC Complement Med Ther 2023; 23:436. [PMID: 38049779 PMCID: PMC10694954 DOI: 10.1186/s12906-023-04245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Despite the critical progress of non-small cell lung cancer (NSCLC) therapeutic approaches, the clinical outcomes remain considerably poor. The requirement of developing novel therapeutic interventions is still urgent. In this study, we showed for the first time that diosbulbin C, a natural diterpene lactone component extracted from traditional Chinese medicine Dioscorea bulbifera L., possesses high anticancer activity in NSCLC. METHODS A549 and NCI-H1299 cells were used. The inhibitory effects of the diosbulbin C on NSCLC cell proliferation were evaluated using cytotoxicity, clone formation, EdU assay, and flow cytometry. Network pharmacology methods were used to explore the targets through which the diosbulbin C inhibited NSCLC cell proliferation. Molecular docking, qRT-PCR, and western blotting were used to validate the molecular targets and regulated molecules of diosbulbin C in NSCLC. RESULTS Diosbulbin C treatment in NSCLC cells results in a remarkable reduction in cell proliferation and induces significant G0/G1 phase cell cycle arrest. AKT1, DHFR, and TYMS were identified as the potential targets of diosbulbin C. Diosbulbin C may inhibit NSCLC cell proliferation by downregulating the expression/activation of AKT, DHFR, and TYMS. In addition, diosbulbin C was predicted to exhibit high drug-likeness properties with good water solubility and intestinal absorption, highlighting its potential value in the discovery and development of anti-lung cancer drugs. CONCLUSIONS Diosbulbin C induces cell cycle arrest and inhibits the proliferation of NSCLC cells, possibly by downregulating the expression/activation of AKT, DHFR, and TYMS.
Collapse
Affiliation(s)
- Zhiyu Zhu
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yanfen Liu
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jiangping Zeng
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shuyi Ren
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Lu Wei
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Fei Wang
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Haiyang Jiang
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xinbing Sui
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Weiwei Jin
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Lijun Jin
- Department of Traditional Chinese Medicine, Hangzhou Shangcheng District People's Hospital, Hangzhou, China.
| | - Xueni Sun
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
17
|
Feng M, Luo F, Wu H, Chen Y, Zuo J, Weng X, Chen G, Zhong J. Network Pharmacology Analysis and Machine-Learning Models Confirmed the Ability of YiShen HuoXue Decoction to Alleviate Renal Fibrosis by Inhibiting Pyroptosis. Drug Des Devel Ther 2023; 17:3169-3192. [PMID: 37900883 PMCID: PMC10612518 DOI: 10.2147/dddt.s420135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/07/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose YiShen HuoXue decoction (YSHXD) is a formulation that has been used clinically for the treatment of renal fibrosis (RF) for many years. We aimed to clarify therapeutic effects of YSHXD against RF and potential pharmacological mechanisms. Materials and Methods We used network pharmacology analysis and machine-learning to screen the core components and core targets of YSHXD against RF, followed by molecular docking and molecular dynamics simulations to confirm the reliability of the results. Finally, we validated the network pharmacology analysis experimentally in HK-2 cells and a rat model of RF established by unilateral ureteral ligation (UUO). Results Quercetin, kaempferol, luteolin, beta-sitosterol, wogonin, stigmasterol, isorhamnetin, baicalein, and dihydrotanshinlactone progesterone were identified as the main active components of YSHXD in the treatment of unilateral ureteral ligation-induced RF, with IL-6, IL1β, TNF, AR, and PTGS2 as core target proteins. Molecular docking and molecular dynamics simulations further confirmed the relationship between compounds and target proteins. The potential molecular mechanism of YSHXD predicted by network pharmacology analysis was confirmed in HK-2 cells and UUO rats. YSHXD downregulated NLRP3, ASC, NF-κBp65, Caspase-1, GSDMD, PTGS2, IL-1β, IL-6, IL-18, TNF-α, α-SMA and upregulated HGF, effectively alleviating the RF process. Conclusion YSHXD exerts important anti-inflammatory and anti-cellular inflammatory necrosis effects by inhibiting the NLRP3/caspase-1/GSDMD-mediated pyroptosis pathway, indicating that YSHXD represents a new strategy and complementary approach to RF therapy.
Collapse
Affiliation(s)
- MinChao Feng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Fang Luo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - HuiMin Wu
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Yushan Chen
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Jinjin Zuo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Xueying Weng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Guozhong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Jian Zhong
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
18
|
Tsai SW, Wang JH, Chang YK, Lin CC. Erianin alleviates collagen-induced arthritis in mice by inhibiting Th17 cell differentiation. Open Life Sci 2023; 18:20220703. [PMID: 37711216 PMCID: PMC10499012 DOI: 10.1515/biol-2022-0703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder. Its pathogenesis is complicated but highly related to aberrant Th17 overactivation. Uncontrolled Th17 cell expansion and activation in populations and associated activities contribute to the progression of RA. Although clinical RA remedies are available, not all RA patients respond to these treatments, and adverse effects are always a concerning issue during treatment. To expand the repertoire of possible anti-RA remedies, we chose the phytochemical compound erianin, isolated from Dendrobium sp., and evaluated its antiarthritic effect in vitro and in vivo. We found that erianin efficiently controlled the differentiation and activation of Th17 cell development from primary CD4 T cells, limiting IL-17A cytokine production and RORγT transcript generation. In line with molecular docking models, the essential signaling pathway for Th17 polarization, the JAK/STAT3 pathway, was inhibited upon erianin treatment, with dose-dependent inhibition of phosphorylation shown by western blotting. More importantly, erianin treatment reduced arthritic manifestations and proinflammatory cytokine levels in collagen-induced arthritis (CIA) mice, as well as protecting the joint histological microstructure. Overall, erianin revealed a promising inhibitory effect on Th17 overactivation and decreased disability in CIA mice. Therefore, erianin could be further developed as a candidate RA remedy.
Collapse
Affiliation(s)
- Sen-Wei Tsai
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Jou-Hsuan Wang
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Chi-Chen Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung807, Taiwan
| |
Collapse
|
19
|
Xie L, Huang J, Xiong T, Ma Y. Secondary Metabolomic Analysis and In Vitro Bioactivity Evaluation of Stems Provide a Comprehensive Comparison between Dendrobium chrysotoxum and Dendrobium thyrsiflorum. Molecules 2023; 28:6039. [PMID: 37630293 PMCID: PMC10458425 DOI: 10.3390/molecules28166039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The stems of Dendrobium chrysotoxum (DC) are commonly used as health-promoting foods due to their excellent biological activities. However, the stems of D. thyrsiflorum (DT) are often used to meet the scarcity of DC in production because of their highly similar morphology. However, the related metabolomic and bioactive information on the stems of DC and DT are largely deficient. Here, secondary metabolites of DC and DT stems were identified using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry, and their health-promoting functions were evaluated using several in vitro arrays. A total of 490 metabolites were identified in two stems, and 274 were significantly different. We screened out 10 key metabolites to discriminate the two species, and 36 metabolites were determined as health-promoting constituents. In summary, DT stems with higher extract yield, higher total phenolics and flavonoids, and stronger in vitro antioxidant activities demonstrated considerable potential in food and health fields.
Collapse
Affiliation(s)
- Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; (L.X.); (T.X.)
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
- Henan Funiu Mountain Biological and Ecological Environment Observatory, Nanyang 473000, China
| | - Tingjian Xiong
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; (L.X.); (T.X.)
| | - Yao Ma
- Henan Funiu Mountain Biological and Ecological Environment Observatory, Nanyang 473000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Wang P, Jia X, Lu B, Huang H, Liu J, Liu X, Wu Q, Hu Y, Li P, Wei H, Liu T, Zhao D, Zhang L, Tian X, Jiang Y, Qiao Y, Nie W, Ma X, Bai R, Peng C, Dong Z, Liu K. Erianin suppresses constitutive activation of MAPK signaling pathway by inhibition of CRAF and MEK1/2. Signal Transduct Target Ther 2023; 8:96. [PMID: 36872366 PMCID: PMC9986241 DOI: 10.1038/s41392-023-01329-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 01/18/2023] [Indexed: 03/07/2023] Open
Abstract
Constitutive activation of RAS-RAF-MEK-ERK signaling pathway (MAPK pathway) frequently occurs in many cancers harboring RAS or RAF oncogenic mutations. Because of the paradoxical activation induced by a single use of BRAF or MEK inhibitors, dual-target RAF and MEK treatment is thought to be a promising strategy. In this work, we evaluated erianin is a novel inhibitor of CRAF and MEK1/2 kinases, thus suppressing constitutive activation of the MAPK signaling pathway induced by BRAF V600E or RAS mutations. KinaseProfiler enzyme profiling, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), cellular thermal shift assay, computational docking, and molecular dynamics simulations were utilized to screen and identify erianin binding to CRAF and MEK1/2. Kinase assay, luminescent ADP detection assay, and enzyme kinetics assay were investigated to identify the efficiency of erianin in CRAF and MEK1/2 kinase activity. Notably, erianin suppressed BRAF V600E or RAS mutant melanoma and colorectal cancer cell by inhibiting MEK1/2 and CRAF but not BRAF kinase activity. Moreover, erianin attenuated melanoma and colorectal cancer in vivo. Overall, we provide a promising leading compound for BRAF V600E or RAS mutant melanoma and colorectal cancer through dual targeting of CRAF and MEK1/2.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xuechao Jia
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Han Huang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Jialin Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xuejiao Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Qiong Wu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Yamei Hu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Huifang Wei
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Tingting Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Dengyun Zhao
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Lingwei Zhang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xueli Tian
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China
| | - Yan Qiao
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Ruihua Bai
- The Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Zigang Dong
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China. .,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450000, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450000, Zhengzhou, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.
| | - Kangdong Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China. .,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450000, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450000, Zhengzhou, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|