1
|
Park S, Kim S, Kim MY, Lee SS, Choi J. Pituitary tumor‑transforming gene 1 regulates the senescence and apoptosis of oral squamous cell carcinoma in a p21‑dependent DNA damage response manner. Oncol Rep 2024; 52:135. [PMID: 39155881 PMCID: PMC11338240 DOI: 10.3892/or.2024.8794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 08/20/2024] Open
Abstract
Pituitary tumor‑transforming gene 1 (PTTG1), also known as securin, is a proto‑oncogene involved in the development of various cancers by promoting cell proliferation and mobility. However, its underlying biological mechanisms in oral squamous cell carcinoma (OSCC) progression remain unclear. in the present study, it was sought to elucidate the role of PTTG1 as an oncogene in OSCC progression and was attempted to unravel the underlying mechanism and impact of PTTG1 expression on cell cycle, cell death, and cellular senescence. The effect of double strand break on PTTG1 expression was investigated in OSCC growth. To identify the role of PTTG1 in OSCC growth, the cell viability and senescence was analyzed by EdU and senescence‑associated beta‑galactosidase (SA‑β‑gal) assay, respectively. To verify the DNA damage‑induced senescence of PTTG1, the chromosomal damage in OSCC was analyzed in vitro. Finally, the effect of PTTG1 on tumor growth and gene expression related to cell viability and DNA damaged‑induced senescence was investigated in vivo. PTTG1 expression was compared between OSCC and healthy patient samples (n=32) using reverse transcription‑quantitative PCR and immunohistochemistry; and it was found that PTTG1 expression was upregulated in OSCC. Small interfering RNA‑mediated knockdown of PTTG1 in two OSCC cell lines revealed that PTTG1 downregulation significantly inhibited cell proliferation and arrested the cell cycle pathway as evidenced by changes in checkpoint genes (such as cyclin D1, E and B1). PTTG1 knockdown also increased apoptosis, as evidenced by the upregulation of apoptotic genes [such as cleaved (c‑) Caspase‑7 and c‑poly (ADP‑ribose) polymerase]. Moreover, PTTG1 downregulation promoted cellular senescence, as shown by western blotting and SA‑β‑gal staining. Finally, senescence‑induced DNA damage was observed in OSCC cells, which accelerates genomic instability, through chromosomal damage analysis. Taken together, the present findings suggested that PTTG1 acts as a proto‑oncogene; regulates cell proliferation, cell cycle, cellular senescence and DNA damage in OSCC; and may serve as a novel diagnostic biomarker and potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Sang Shin Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
2
|
Lu X, Chandravanshi M, Sabbasani VR, Gaikwad S, Hughitt VK, Gyabaah-Kessie N, Scroggins BT, Das S, Myint W, Clapp ME, Schwieters CD, Dyba MA, Bolhuis DL, Koscielniak JW, Andresson T, Emanuele MJ, Brown NG, Matsuo H, Chari R, Citrin DE, Mock BA, Swenson RE, Walters KJ. A structure-based designed small molecule depletes hRpn13 Pru and a select group of KEN box proteins. Nat Commun 2024; 15:2485. [PMID: 38509117 PMCID: PMC10954691 DOI: 10.1038/s41467-024-46644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Proteasome subunit hRpn13 is partially proteolyzed in certain cancer cell types to generate hRpn13Pru by degradation of its UCHL5/Uch37-binding DEUBAD domain and retention of an intact proteasome- and ubiquitin-binding Pru domain. By using structure-guided virtual screening, we identify an hRpn13 binder (XL44) and solve its structure ligated to hRpn13 Pru by integrated X-ray crystallography and NMR to reveal its targeting mechanism. Surprisingly, hRpn13Pru is depleted in myeloma cells following treatment with XL44. TMT-MS experiments reveal a select group of off-targets, including PCNA clamp-associated factor PCLAF and ribonucleoside-diphosphate reductase subunit M2 (RRM2), that are similarly depleted by XL44 treatment. XL44 induces hRpn13-dependent apoptosis and also restricts cell viability by a PCLAF-dependent mechanism. A KEN box, but not ubiquitination, is required for XL44-induced depletion of PCLAF. Here, we show that XL44 induces ubiquitin-dependent loss of hRpn13Pru and ubiquitin-independent loss of select KEN box containing proteins.
Collapse
Affiliation(s)
- Xiuxiu Lu
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Monika Chandravanshi
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Venkata R Sabbasani
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Snehal Gaikwad
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - V Keith Hughitt
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nana Gyabaah-Kessie
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Wazo Myint
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michelle E Clapp
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marzena A Dyba
- Biophysics Resource, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janusz W Koscielniak
- Basic Science Program, Leidos Biomedical Research Inc., NMR Facility for Biological Research, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
3
|
Wen J, Wan L, Dong X. Prognostic value of PRR11 and immune cell infiltration in Ewing sarcoma. PLoS One 2024; 19:e0299720. [PMID: 38427643 PMCID: PMC10906862 DOI: 10.1371/journal.pone.0299720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
Ewing's sarcoma (ES) is the second most common bone and soft tissue malignancy in children and adolescents with a poor prognosis. The identification of genes with prognostic value may contribute to the prediction and treatment of this disease. The GSE17679, GSE68776, GSE63155, and GSE63156 datasets were downloaded from the Gene Expression Omnibus database and qualified. Prognostic value of differentially expressed genes (DEGs) between the normal and tumor groups and immune cell infiltration were explored by several algorithms. A prognostic model was established and validated. Finally, functional analyses of the DEGs were performed. Proline rich 11 (PRR11) and mast cell infiltration were noted as the key indicators for the prognosis of ES. Kaplan-Meier and scatter plots for the training and two validation sets showed that patients in the low-PRR11 expression group were associated with better outcomes than those in the high-PRR11 expression group. The concordance indices and calibration analyses of the prognostic model indicated good predictive accuracy in the training and validation sets. The area under the curve values obtained through the receiver operating characteristic analysis for 1-, 3-, 5-year prediction were ≥ 0.75 in the three cohorts, suggesting satisfactory sensitivity and specificity of the model. Decision curve analyses suggested that patients could benefit more from the model than the other strategies. Functional analyses suggested that DEGs were mainly clustered in the cell cycle pathway. PRR11 and mast cell infiltration are potential prognostic indicators in ES. PRR11 possibly affects the prognosis of patients with ES through the cell cycle pathway.
Collapse
Affiliation(s)
- Jian Wen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, China
| | - Xieping Dong
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Han W, Chen L. PRR11 in Malignancies: Biological Activities and Targeted Therapies. Biomolecules 2022; 12:biom12121800. [PMID: 36551227 PMCID: PMC9775115 DOI: 10.3390/biom12121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Proline rich 11 (PRR11), initially renowned for its relevance with cell-cycle progression, is a proline-rich protein coding gene in chromosome 17q22-23. Currently, accumulating studies have demonstrated that PRR11 plays a critical role in cellular proliferation, colony formation, migration, invasion, cell-cycle progression, apoptosis, autophagy and chemotherapy resistance via multiple signaling pathways and biological molecules in several solid tumors. In particular, PRR11 also serves as a promising prognostic indicator in a limited number of human cancers, gradually manifesting its potential application for targeted therapies. In this review, we summarize functional activities, related signaling pathways and biological molecules of PRR11 in various malignancies and generalize potential application of PRR11 for targeted therapies, thereby contributing to further exploration of PRR11 in cancer treatment.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Correspondence: (W.H.); (L.C.)
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Correspondence: (W.H.); (L.C.)
| |
Collapse
|