1
|
Li N, Xu X, Li J, Hull JJ, Chen L, Liang G. A spray-induced gene silencing strategy for Spodoptera frugiperda oviposition inhibition using nanomaterial-encapsulated dsEcR. Int J Biol Macromol 2024; 281:136503. [PMID: 39395517 DOI: 10.1016/j.ijbiomac.2024.136503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Although RNAi-based pest management holds great potential as an alternative to traditional chemical control, its efficiency is restricted by dsRNA instability and limited cellular uptake. Using nanomaterials to facilitate dsRNA delivery has shown promise in solving these challenges. In this study, we firstly used RNAi to investigate the role of the juvenile hormone and ecdysteroid signaling pathways genes in reproduction of Spodoptera frugiperda, the fall armyworm. Females in knocked-down treatments of any of the Met, EcR, and USP genes had greatly reduced fertility with the most pronounced inhibitory effects on oviposition observed following EcR knockdown, and thus the dsEcR could be a candidate target for RNAi-based oviposition inhibitory agency. Then a combinatorial spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) approach that targeted EcR was conducted. At 72 h post-spay, the transcript levels of EcR and the oviposition were successfully reduced and inhibited. These findings support the groundwork for further developing novel RNAi-based pest management strategies for S. frugiperda.
Collapse
Affiliation(s)
- Ningning Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaona Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jiwen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Maricopa, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Liu F, Qi WX, Liu FF, Ren HY, Zhang BX, Rao XJ. The growth-blocking peptide is a dual regulator of development and immunity with biocontrol potential in Spodoptera frugiperda (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106097. [PMID: 39277421 DOI: 10.1016/j.pestbp.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024]
Abstract
Insect growth-blocking peptides (GBPs) are a family of cytokines found in several insect orders and are known for their roles in regulating development, paralysis, cell proliferation, and immune responses. Despite their diverse functions, the potential of GBPs as biocontrol targets against the pest Spodoptera frugiperda (Lepidoptera: Noctuidae) has not been fully explored. In this study, S. frugiperda GBP (SfGBP) was identified and functionally characterized. SfGBP is synthesized as a 146 amino acid proprotein with a 24 amino acid C-terminal active peptide (Glu123-Gly146). Predominant expression of SfGBP occurs in fourth to sixth instar larvae and in the larval fat body, with significant upregulation in response to pathogens and pathogen-associated molecular patterns. Injection of the synthetic active peptide into larvae induced growth retardation, delayed pupation, and increased survival against Beauveria bassiana infection. Conversely, RNA interference-mediated knockdown of SfGBP resulted in accelerated growth, earlier pupation, and decreased survival against B. bassiana infection. Further analysis revealed that SfGBP promoted SF9 cell proliferation and spreading, enhanced bacteriostatic activity of larval hemolymph, and directly inhibited germination of B. bassiana conidia. In addition, SfGBP enhanced humoral responses, such as upregulation of immunity-related genes and generation of reactive oxygen species, and cellular responses, such as nodulation, phagocytosis, and encapsulation. These results highlight the dual regulatory role of SfGBP in development and immune responses and establish it as a promising biocontrol target for the management of S. frugiperda.
Collapse
Affiliation(s)
- Feng Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Wen-Xuan Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Fang-Fang Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Hai-Yan Ren
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Bang-Xian Zhang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Xiang-Jun Rao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-Products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China.
| |
Collapse
|
3
|
Takahashi-Nakaguchi A, Horiuchi Y, Yamamoto M, Totsuka Y, Wakabayashi K. Pierisin, Cytotoxic and Apoptosis-Inducing DNA ADP-Ribosylating Protein in Cabbage Butterfly. Toxins (Basel) 2024; 16:270. [PMID: 38922164 PMCID: PMC11209040 DOI: 10.3390/toxins16060270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Pierisin-1 was serendipitously discovered as a strong cytotoxic and apoptosis-inducing protein from pupae of the cabbage butterfly Pieris rapae against cancer cell lines. This 98-kDa protein consists of the N-terminal region (27 kDa) and C-terminal region (71 kDa), and analysis of their biological function revealed that pierisin-1 binds to cell surface glycosphingolipids on the C-terminal side, is taken up into the cell, and is cleaved to N- and C-terminal portions, where the N-terminal portion mono-ADP-ribosylates the guanine base of DNA in the presence of NAD to induce cellular genetic mutation and apoptosis. Unlike other ADP-ribosyltransferases, pieisin-1 was first found to exhibit DNA mono-ADP-ribosylating activity and show anti-cancer activity in vitro and in vivo against various cancer cell lines. Pierisin-1 was most abundantly produced during the transition from the final larval stage to the pupal stage of the cabbage butterfly, and this production was regulated by ecdysteroid hormones. This suggests that pierisn-1 might play a pivotal role in the process of metamorphosis. Moreover, pierisin-1 could contribute as a defense factor against parasitization and microbial infections in the cabbage butterfly. Pierisin-like proteins in butterflies were shown to be present not only among the subtribe Pierina but also among the subtribes Aporiina and Appiadina, and pierisin-2, -3, and -4 were identified in these butterflies. Furthermore, DNA ADP-ribosylating activities were found in six different edible clams. Understanding of the biological nature of pierisin-1 with DNA mono-ADP-ribosylating activity could open up exciting avenues for research and potential therapeutic applications, making it a subject of great interest in the field of molecular biology and biotechnology.
Collapse
Affiliation(s)
| | - Yu Horiuchi
- Aquatic Food Research Laboratory, Central Research Institute, Tokyo Innovation Center, Nissui Corporation, 1-32-3 Shichikoku, Hachioji City 192-0991, Japan
| | - Masafumi Yamamoto
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Yukari Totsuka
- Department of Environmental Health Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
4
|
Xie Y, Tan Y, Wen X, Deng W, Yu J, Li M, Meng F, Wang X, Zhu D. The Expression and Function of Notch Involved in Ovarian Development and Fecundity in Basilepta melanopus. INSECTS 2024; 15:292. [PMID: 38667422 PMCID: PMC11050577 DOI: 10.3390/insects15040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Basilepta melanopus is a pest that severely affects oil tea plants, and the Notch signaling pathway plays a significant role in the early development of insect ovaries. In this study, we explored the function of the notch gene within the Notch signaling pathway in the reproductive system of B. melanopus. The functional domains and expression patterns of Bmnotch were analyzed. Bmnotch contains 45 epidermal growth factor-like (EGF-like) domains, one negative regulatory region, one NODP domain and one repeat-containing domain superfamily. The qPCR reveals heightened expression in early developmental stages and specific tissues like the head and ovaries. The RNA interference (RNAi)-based suppression of notch decreased its expression by 52.1%, exhibiting heightened sensitivity to dsNotch at lower concentrations. Phenotypic and mating experiments have demonstrated that dsNotch significantly impairs ovarian development, leading to reduced mating frequencies and egg production. This decline underscores the Notch pathway's crucial role in fecundity. The findings advocate for RNAi-based, Notch-targeted pest control as an effective and sustainable strategy for managing B. melanopus populations, signifying a significant advancement in forest pest control endeavors.
Collapse
Affiliation(s)
- Yifei Xie
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Yifan Tan
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| | - Xuanye Wen
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110031, China;
| | - Wan Deng
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Jinxiu Yu
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Mi Li
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Fanhui Meng
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| | - Xiudan Wang
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| | - Daohong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| |
Collapse
|
5
|
Zhou X, Wei J, Ge H, Guan D, Li H, Zhang H, Zheng Y, Qian K, Wang J. Functional Characterization and Putative Regulatory Mechanism of an RNAi Efficiency-Related Nuclease (REase) in the Fall Armyworm, Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3973-3983. [PMID: 38361393 DOI: 10.1021/acs.jafc.3c08665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The lepidopteran-specific RNAi efficiency-related nuclease (REase) has been shown to contribute to double-strand RNA (dsRNA) degradation in several lepidopteran insects. However, little is known about its regulatory mechanism. In this study, we identified and characterized SfREase in Spodoptera frugiperda. The exposure of the third-instar larvae to dsEGFP and high temperature led to the upregulation of SfREase, whereas starvation treatment resulted in the downregulation of SfREase. Further experiments revealed that dsRNA degraded more slowly in the hemolymph or midgut fluid extracted from dsSfREase-injected or dsSfREase-ingested larvae compared with those from dsEGFP-treated larvae, and the recombinant SfREase degraded dsRNA in a concentration-dependent manner. Additionally, the knockdown of SfREase improved RNAi efficiency. Finally, both RNAi and dual-luciferase reporter assay in Sf9 cells revealed that SfREase is negatively regulated by FOXO. These data provide insights into the function and regulatory mechanism of REase and have applied implications for the development of an RNAi-based control strategy of S. frugiperda.
Collapse
Affiliation(s)
- Xiaoyang Zhou
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hai Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hainan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Liu X, Liao W, Wu Z, Pei Y, Wei Z, Lu M. Binding Properties of Odorant-Binding Protein 7 to Host Volatiles in Larvae of Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20671-20679. [PMID: 38103022 DOI: 10.1021/acs.jafc.3c06833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The chemosensory system is crucial during the growth and development of the moths. Spodoptera frugiperda (Lepidoptera: Noctuidae) is one of the most destructive insect pests. However, there is little functional research on odorant-binding proteins (OBPs) in the larval stage of S. frugiperda. Here, we obtained SfruOBP7 from transcriptomics and conducted the sequence analysis. We used quantitative real-time PCR to explore the expression profiles of SfruOBP7. The function identification showed that SfruOBP7 has a binding ability to 18 plant volatiles. Further molecular docking and site-directed mutant assay revealed that Lys45 and Phe110 were the key binding sites for SfruOBP7 interacting with linalool. In the behavior assays, linalool could attract the larvae, and dsOBP7-treated larvae lost their attraction to linalool. Our results help to reveal the essential molecular mechanism of the olfactory perception in the larvae and design an attractant based on the host volatiles.
Collapse
Affiliation(s)
- XiaoLong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wang Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - ZheRan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - YiWen Pei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - ZhiQiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
7
|
Seth RK, Yadav P, Reynolds SE. Dichotomous sperm in Lepidopteran insects: a biorational target for pest management. FRONTIERS IN INSECT SCIENCE 2023; 3:1198252. [PMID: 38469506 PMCID: PMC10926456 DOI: 10.3389/finsc.2023.1198252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 03/13/2024]
Abstract
Lepidoptera are unusual in possessing two distinct kinds of sperm, regular nucleated (eupyrene) sperm and anucleate (apyrene) sperm ('parasperm'). Sperm of both types are transferred to the female and are required for male fertility. Apyrene sperm play 'helper' roles, assisting eupyrene sperm to gain access to unfertilized eggs and influencing the reproductive behavior of mated female moths. Sperm development and behavior are promising targets for environmentally safer, target-specific biorational control strategies in lepidopteran pest insects. Sperm dimorphism provides a wide window in which to manipulate sperm functionality and dynamics, thereby impairing the reproductive fitness of pest species. Opportunities to interfere with spermatozoa are available not only while sperm are still in the male (before copulation), but also in the female (after copulation, when sperm are still in the male-provided spermatophore, or during storage in the female's spermatheca). Biomolecular technologies like RNAi, miRNAs and CRISPR-Cas9 are promising strategies to achieve lepidopteran pest control by targeting genes directly or indirectly involved in dichotomous sperm production, function, or persistence.
Collapse
Affiliation(s)
- Rakesh K. Seth
- Department of Zoology, University of Delhi, Delhi, India
| | - Priya Yadav
- Department of Zoology, University of Delhi, Delhi, India
| | - Stuart E. Reynolds
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
8
|
Timani K, Bastarache P, Morin PJ. Leveraging RNA Interference to Impact Insecticide Resistance in the Colorado Potato Beetle, Leptinotarsa decemlineata. INSECTS 2023; 14:418. [PMID: 37233046 PMCID: PMC10231074 DOI: 10.3390/insects14050418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata Say, is a potato pest that can cause important economic losses to the potato industry worldwide. Diverse strategies have been deployed to target this insect such as biological control, crop rotation, and a variety of insecticides. Regarding the latter, this pest has demonstrated impressive abilities to develop resistance against the compounds used to regulate its spread. Substantial work has been conducted to better characterize the molecular signatures underlying this resistance, with the overarching objective of leveraging this information for the development of novel approaches, including RNAi-based techniques, to limit the damage associated with this insect. This review first describes the various strategies utilized to control L. decemlineata and highlights different examples of reported cases of resistances against insecticides for this insect. The molecular leads identified as potential players modulating insecticide resistance as well as the growing interest towards the use of RNAi aimed at these leads as part of novel means to control the impact of L. decemlineata are described subsequently. Finally, select advantages and limitations of RNAi are addressed to better assess the potential of this technology in the broader context of insecticide resistance for pest management.
Collapse
Affiliation(s)
| | | | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (K.T.); (P.B.)
| |
Collapse
|