1
|
Zhao W, Lin L, Kelly KM, Opsasnick LA, Needham BL, Liu Y, Sen S, Smith JA. Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA). Epigenetics 2025; 20:2445447. [PMID: 39825881 DOI: 10.1080/15592294.2024.2445447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm. To identify the DNAm sites across the epigenome that are associated with discrimination, we conducted epigenome-wide association analyses (EWAS) of three discrimination measures (everyday discrimination, race-related major discrimination, and non-race-related major discrimination) in 1,151 participants, including 565 non-Hispanic White, 221 African American, and 365 Hispanic individuals, from the Multi-Ethnic Study of Atherosclerosis (MESA). We conducted both race/ethnicity-stratified analyses as well as trans-ancestry meta-analyses. At false discovery rate of 10%, 7 CpGs and 4 differentially methylated regions (DMRs) containing 11 CpGs were associated with perceived discrimination exposures in at least one racial/ethnic group or in meta-analysis. Identified CpGs and/or nearby genes have been implicated in cellular development pathways, transcription factor binding, cancer and multiple autoimmune and/or inflammatory diseases. Of the identified CpGs (7 individual CpGs and 11 within DMRs), two CpGs and one CpG within a DMR were associated with expression of cis genes NDUFS5, AK1RIN1, NCF4 and ADSSL1. Our study demonstrated the potential influence of discrimination on DNAm and subsequent gene expression.
Collapse
Affiliation(s)
- Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kristen M Kelly
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC, USA
| | - Srijan Sen
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Robles J, Prakash A, Vizcaíno JA, Casal JI. Integrated meta-analysis of colorectal cancer public proteomic datasets for biomarker discovery and validation. PLoS Comput Biol 2024; 20:e1011828. [PMID: 38252632 PMCID: PMC10833860 DOI: 10.1371/journal.pcbi.1011828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The cancer biomarker field has been an object of thorough investigation in the last decades. Despite this, colorectal cancer (CRC) heterogeneity makes it challenging to identify and validate effective prognostic biomarkers for patient classification according to outcome and treatment response. Although a massive amount of proteomics data has been deposited in public data repositories, this rich source of information is vastly underused. Here, we attempted to reuse public proteomics datasets with two main objectives: i) to generate hypotheses (detection of biomarkers) for their posterior/downstream validation, and (ii) to validate, using an orthogonal approach, a previously described biomarker panel. Twelve CRC public proteomics datasets (mostly from the PRIDE database) were re-analysed and integrated to create a landscape of protein expression. Samples from both solid and liquid biopsies were included in the reanalysis. Integrating this data with survival annotation data, we have validated in silico a six-gene signature for CRC classification at the protein level, and identified five new blood-detectable biomarkers (CD14, PPIA, MRC2, PRDX1, and TXNDC5) associated with CRC prognosis. The prognostic value of these blood-derived proteins was confirmed using additional public datasets, supporting their potential clinical value. As a conclusion, this proof-of-the-concept study demonstrates the value of re-using public proteomics datasets as the basis to create a useful resource for biomarker discovery and validation. The protein expression data has been made available in the public resource Expression Atlas.
Collapse
Affiliation(s)
- Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - Ananth Prakash
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - J. Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
3
|
Mneimneh AT, Mehanna MM. Chondroitin Sulphate: An emerging therapeutic multidimensional proteoglycan in colon cancer. Int J Biol Macromol 2024; 254:127672. [PMID: 38287564 DOI: 10.1016/j.ijbiomac.2023.127672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
Chondroitin sulfate (CS) is a sulfated glycosaminoglycan (GAG) that has captured massive attention in the field of drug delivery. As the colon is considered the preferred site for local and systemic delivery of bioactive agents for the treatment of various diseases, colon-targeted drug delivery rose to the surface of research. Amid several tactics to attain colon-targeted drug release, the exploitation of polymers degraded by colonic bacteria holds great promise. Chondroitin sulfate as a biodegradable, biocompatible mucopolysaccharide is known for its anti-inflammatory, anti-osteoarthritis, anti-atherosclerotic, anti-oxidant, and anti-coagulant effects. Besides these therapeutic functions, CS thrived to play a major role in nanocarriers as a matrix material, coat, and targeting ligand. This review focuses on the role of CS in nanocarriers as a matrix material or as a targeting moiety for colon cancer therapy, relating the present applications to future perspectives.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
4
|
Gopalakrishnan KV, Kannan B, Pandi C, Jayaseelan VP, Arumugam P. Prognostic and clinicopathological significance of MRC2 expression in head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101617. [PMID: 37666484 DOI: 10.1016/j.jormas.2023.101617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive types of cancers worldwide, with metastasis being the major cause of death. Recent research suggests that changes in the expression of MRC2 (mannose receptor, C-type 2) may play a role in the development and progression of various cancers; however, its expression pattern in HNSCC/ OSCC is unknown. This study aimed to elucidate the clinicopathological significance and prognostic role of MRC2 expression in HNSCC, including OSCC. MATERIALS AND METHODS In the present study, we assessed the potential roles of MRC2 in expression, prognostic value, immune infiltration and functional enrichment analysis in HNSCC patients by using different bioinformatics databases. We then validated MRC2 gene expression in 30 OSCC and adjacent normal tissue samples using quantitative reverse transcription PCR (RT-qPCR). RESULTS MRC2 mRNA and protein expression were significantly upregulated in OSCC and HNSCC patients compared to that in adjacent normal tissues. Upregulated MRC2 expression was associated with poor overall survival. Increased MRC2 expression has also been linked to an aggressive clinicopathological features including advanced stages, grade, metastasis and HPV status. Interestingly, our in silico results strongly suggest that the MRC2 gene and protein interaction networks are associated with HNSCC development. Moreover, the tumor infiltration level was significantly correlated with HPV-negative HNSCC patients. CONCLUSION Our results suggest that MRC2 could be used as a novel prognostic marker and therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Karpaka Vinayakam Gopalakrishnan
- Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Balachander Kannan
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Chandra Pandi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Vijayashree Priyadharsini Jayaseelan
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Paramasivam Arumugam
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
5
|
Li Y, Tang M, Dang W, Zhu S, Wang Y. Identification of disulfidptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:13995-14014. [PMID: 37543978 DOI: 10.1007/s00432-023-05211-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Colorectal cancer is the second leading cause of cancer-related deaths, which imposes a significant societal burden. Regular screening and emerging molecular tumor markers have important implications for detecting the progression and development of colorectal cancer. Disulfidptosis is a newly defined type of programmed cell death triggered by abnormal accumulation of disulfide compounds in cells that stimulate disulfide stress. Currently, there is no relevant discussion on this mechanism and colorectal cancer. METHODS We classified the disulfidptosis-related subtypes of colorectal cancer using bioinformatics methods. Through secondary clustering of differentially expressed genes between subtypes, we identified characteristic genes of the disulfidptosis subtype, constructed a prognostic model, and searched for potential biomarkers through clinical validation. RESULTS Using disulfidptosis-related genes collected from the literature, we classified colorectal cancer patients from public databases into three subtypes. The differentially expressed genes between subtypes were clustered into three gene subtypes, and eight characteristic genes were screened to construct a prognostic model. CONCLUSION The disulfidptosis mechanism has important value in the classification of colorectal cancer patients, and characteristic genes selected based on this mechanism can serve as a new potential biological marker for colorectal cancer.
Collapse
Affiliation(s)
- Ying Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mengyao Tang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Dang
- The First College for Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shu Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Street, Lixia District, Jinan, Shandong, China.
| | - Yunpeng Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Street, Lixia District, Jinan, Shandong, China.
| |
Collapse
|
6
|
Generalov E, Yakovenko L. Receptor basis of biological activity of polysaccharides. Biophys Rev 2023; 15:1209-1222. [PMID: 37975017 PMCID: PMC10643635 DOI: 10.1007/s12551-023-01102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023] Open
Abstract
Polysaccharides, the most diverse forms of organic molecules in nature, exhibit a large number of different biological activities, such as immunomodulatory, radioprotective, antioxidant, regenerative, metabolic, signaling, antitumor, and anticoagulant. The reaction of cells to a polysaccharide is determined by its specific interaction with receptors present on the cell surface, the type of cells, and their condition. The effect of many polysaccharides depends non-linearly on their concentration. The same polysaccharide in different conditions can have very different effects on cells and organisms, up to the opposite; therefore, when conducting studies of the biological activity of polysaccharides, both for the purpose of developing new drugs or approaches to the treatment of patients, and in order to clarify the features of intracellular processes, information about already known research results is needed. There is a lot of scattered data on the biological activities of polysaccharides, but there are few reviews that would consider natural polysaccharides from various sources and possible molecular mechanisms of their action. The purpose of this review is to present the main results published at different times in order to facilitate the search for information necessary for conducting relevant studies.
Collapse
Affiliation(s)
- Evgenii Generalov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Leonid Yakovenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
7
|
Cordier C, Haustrate A, Prevarskaya N, Lehen’kyi V. Characterization of the TRPV6 calcium channel-specific phenotype by RNA-seq in castration-resistant human prostate cancer cells. Front Genet 2023; 14:1215645. [PMID: 37576552 PMCID: PMC10415680 DOI: 10.3389/fgene.2023.1215645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Transient receptor potential vanilloid subfamily member 6 (TRPV6), a highly calcium-selective channel, has been shown to play a significant role in calcium homeostasis and to participate both in vitro and in vivo in growth, cell survival, and drug resistance of prostate cancer. Its role and the corresponding calcium-dependent pathways were mainly studied in hormone-dependent human prostate cancer cell lines, often used as a model of early-stage prostate cancers. The goal of the present study was to describe the TRPV6-specific phenotype and signaling pathways it is involved in, using castration-resistant prostate cancer cell lines. Methods: RNA sequencing (RNA-seq) was used to study the gene expression impacted by TRPV6 using PC3Mtrpv6-/- versus PC3Mtrpv6+/+ and its derivative PC3M-luc-C6trpv6+/+ cell line in its native and TRPV6 overexpressed form. In addition to the whole-cell RNA sequencing, immunoblotting, quantitative PCR, and calcium imaging were used to validate trpv6 gene status and functional consequences, in both trpv6 -/- and TRPV6 overexpression cell lines. Results: trpv6 -/- status was validated using both immunoblotting and quantitative PCR, and the functional consequences of either trpv6 gene deletion or TRPV6 overexpression were shown using calcium imaging. RNA-seq analysis demonstrated that the calcium channel TRPV6, being a crucial player of calcium signaling, significantly impacts the expression of genes involved in cancer progression, such as cell cycle regulation, chemotaxis, migration, invasion, apoptosis, ferroptosis as well as drug resistance, and extracellular matrix (ECM) re-organization. Conclusion: Our data suggest that the trpv6 gene is involved in and regulates multiple pathways related to tumor progression and drug resistance in castration-resistant prostate cancer cells.
Collapse
Affiliation(s)
| | | | | | - V’yacheslav Lehen’kyi
- Department of Biology, Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Faculty of Science and Technologies, University of Lille, Villeneuve d’Ascq, France
| |
Collapse
|
8
|
Zhang H, Liu D, Qin Z, Yi B, Zhu L, Xu S, Wang K, Yang S, Liu R, Yang K, Xu Y. CHMP4C as a novel marker regulates prostate cancer progression through cycle pathways and contributes to immunotherapy. Front Oncol 2023; 13:1170397. [PMID: 37388224 PMCID: PMC10301743 DOI: 10.3389/fonc.2023.1170397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Background CHMP4C is one of the charged multivesicular protein (CHMP), and is involved in the composition of the endosomal sorting complex required for transport III (ESCRT-III), facilitating the necessary separation of daughter cells. CHMP4C has been proposed to be involved in the progression of different carcinomas. However, the value of CHMP4C in prostate cancer has not yet been explored. Prostate cancer is the most frequently occurring malignancy among male and remains a leading cause of deaths in cancers. So far, clinical therapy of prostate cancer is more inclined to molecular classification and specific clinical treatment and research. Our study investigated the expression and clinical prognosis of CHMP4C and explored its potential regulatory mechanism in prostate cancer. The immune status of CHMP4C in prostate cancer and relative immunotherapy were then analyzed in our study. Based on CHMP4C expression, a new subtype of prostate cancer was established for precision treatment. Methods We studied the expression of CHMP4C and relative clinical outcome using the online databases TIMER, GEPIA2, UALCAN, and multiple R packages. Meanwhile, the biological function, immune microenvironment and immunotherapy value of CHMP4C in prostate cancer were further explored on the R software platform with different R packages. Then we performed qRT-PCR, Western Blotting, transwell, CCK8, wound healing assay, colony formation assay and immunohistochemistry to verify the expression of CHMP4C, carcinogenesis and potential regulatory mechanisms in prostate cancer. Results We found that the expression of CHMP4C is significant in prostate cancer and the high expression of CHMP4C represents a poor clinical prognosis and malignant progression of prostate cancer. In subsequent vitro validation, CHMP4C promoted the malignant biological behavior of prostate cancer cell lines by adjusting the cell cycle. Based on CHMP4C expression, we established two new subtypes of prostate cancer and found that low CHMP4C expression has a better immune response while high CHMP4C expression was more sensitive to paclitaxel and 5-fluorouracil. Above findings revealed a new diagnostic marker for prostate cancer and facilitated the subsequent precise treatment of prostate cancer.
Collapse
|