1
|
Singh AP, Ahmad S, Raza K, Gautam HK. Computational screening and MM/GBSA-based MD simulation studies reveal the high binding potential of FDA-approved drugs against Cutibacterium acnes sialidase. J Biomol Struct Dyn 2024; 42:6245-6255. [PMID: 37545341 DOI: 10.1080/07391102.2023.2242950] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
Cutibacterium acnes is an opportunistic pathogen linked with acne vulgaris, affecting 80-90% of teenagers globally. On the leukocyte (WBCs) cell surface, the cell wall anchored sialidase in C. acnes virulence factor, catalysing the sialoconjugates into sialic acids and nutrients for C. acnes resulting in human skin inflammation. The clinical use of antibiotics for acne treatments has severe adverse effects, including microbial dysbiosis and resistance. Therefore, identifying inhibitors for primary virulence factors (Sialidase) was done using molecular docking of 1030 FDA-approved drugs. Initially, based on binding energies (ΔG), Naloxone (ZINC000000389747), Fenoldopam (ZINC000022116608), Labetalol (ZINC000000403010) and Thalitone (ZINC000000057255) were identified that showed high binding energies as -10.2, -10.1, -9.9 and -9.8 kcal/mol, respectively. In 2D analysis, these drugs also showed considerable structural conformer of hydrogen and hydrophobic interactions. Further, a 100 ns MD simulation study found the lowest deviation and fluctuations with various intermolecular interactions to stabilise the complexes. Out of 4, the Naloxone molecule showed robust, steady, and stable RMSD 0.23 ± 0.18 nm. Further, MMGBSA analysis supports MD results and found strong binding energy (ΔG) -29.71 ± 4.97 kcal/mol. In Comparative studies with Neu5Ac2en (native substrate) revealed naloxone has a higher affinity for sialidase. The PCA analysis showed that Naloxone and Thalitone were actively located on the active site, and other compounds were flickered. Our extensive computational and statistical report demonstrates that these FDA drugs can be validated as potential sialidase inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akash Pratap Singh
- Infectious Disease Laboratory, Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Innovative and Scientific Research (AcSIR), Ghaziabad, India
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Hemant K Gautam
- Infectious Disease Laboratory, Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Innovative and Scientific Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Ashraf H, Zaidi E, Rasheed A, Eman E, Khan F. Naegleria fowleri: Understanding the Amoeba's Threat in Recreational Waters. Asia Pac J Public Health 2024; 36:522-523. [PMID: 38623038 DOI: 10.1177/10105395241247129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
- Hamza Ashraf
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Erum Zaidi
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Aden Rasheed
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Eisha Eman
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Farah Khan
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
3
|
Qureshi H, Basheer A, Sajjad W, Faheem M, Babar Jamal S. An integrated in-silico approach for drug target identification in human pathogen Shigella dysenteriae. PLoS One 2024; 19:e0303048. [PMID: 38753867 PMCID: PMC11098424 DOI: 10.1371/journal.pone.0303048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Shigella dysenteriae, is a Gram-negative bacterium that emerged as the second most significant cause of bacillary dysentery. Antibiotic treatment is vital in lowering Shigella infection rates, yet the growing global resistance to broad-spectrum antibiotics poses a significant challenge. The persistent multidrug resistance of S. dysenteriae complicates its management and control. Hence, there is an urgent requirement to discover novel therapeutic targets and potent medications to prevent and treat this disease. Therefore, the integration of bioinformatics methods such as subtractive and comparative analysis provides a pathway to compute the pan-genome of S. dysenteriae. In our study, we analysed a dataset comprising 27 whole genomes. The S. dysenteriae strain SD197 was used as the reference for determining the core genome. Initially, our focus was directed towards the identification of the proteome of the core genome. Moreover, several filters were applied to the core genome, including assessments for non-host homology, protein essentiality, and virulence, in order to prioritize potential drug targets. Among these targets were Integration host factor subunit alpha and Tyrosine recombinase XerC. Furthermore, four drug-like compounds showing potential inhibitory effects against both target proteins were identified. Subsequently, molecular docking analysis was conducted involving these targets and the compounds. This initial study provides the list of novel targets against S. dysenteriae. Conclusively, future in vitro investigations could validate our in-silico findings and uncover potential therapeutic drugs for combating bacillary dysentery infection.
Collapse
Affiliation(s)
- Hurria Qureshi
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| |
Collapse
|
4
|
Naveed M, Ali U, Aziz T, Jabeen K, Arif MH, Alharbi M, Alasmari AF, Albekairi TH. Development and immunological evaluation of an mRNA-based vaccine targeting Naegleria fowleri for the treatment of primary amoebic meningoencephalitis. Sci Rep 2024; 14:767. [PMID: 38191579 PMCID: PMC10774437 DOI: 10.1038/s41598-023-51127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024] Open
Abstract
More than 95% of patients fall victim to primary amoebic meningoencephalitis (PAM), a fatal disease attacking the central nervous system. Naegleria fowleri, a brain-eating microorganism, is PAM's most well-known pathogenic ameboflagellate. Despite the use of antibiotics, the fatality rate continues to rise as no clinical trials have been conducted against this disease. To address this, we mined the UniProt database for pathogenic proteins and selected assumed epitopes to create an mRNA-based vaccine. We identified thirty B-cell and T-cell epitopes for the vaccine candidate. These epitopes, secretion boosters, subcellular trafficking structures, and linkers were used to construct the vaccine candidate. Through predictive modeling and confirmation via the Ramachandran plot (with a quality factor of 92.22), we assessed secondary and 3D structures. The adjuvant RpfE was incorporated to enhance the vaccine construct's immunogenicity (GRAVY index: 0.394, instability index: 38.99, antigenicity: 0.8). The theoretical model of immunological simulations indicated favorable responses from both innate and adaptive immune cells, with memory cells expected to remain active for up to 350 days post-vaccination, while the antigen was eliminated from the body within 24 h. Notably, strong interactions were observed between the vaccine construct and TLR-4 (- 11.9 kcal/mol) and TLR-3 (- 18.2 kcal/mol).
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan.
| | - Urooj Ali
- Department of Biotechnology, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132, Arta, Greece.
| | - Khizra Jabeen
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Muhammad Hammad Arif
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|