1
|
Yu X, Zhang H, Zhang H, Hou C, Wang X, Gu P, Han Y, Yang Z, Zou W. The role of epigenetic methylations in thyroid Cancer. World J Surg Oncol 2024; 22:281. [PMID: 39456011 PMCID: PMC11515417 DOI: 10.1186/s12957-024-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Changran Hou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Pengfei Gu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| |
Collapse
|
2
|
Gorini F, Tonacci A. Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants (Basel) 2024; 13:1242. [PMID: 39456495 PMCID: PMC11505632 DOI: 10.3390/antiox13101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with an increased global incidence in recent decades, despite a substantially unchanged survival. While TC has an excellent overall prognosis, some types of TC are associated with worse patient outcomes, depending on the genetic setting. Furthermore, oxidative stress is related to more aggressive features of TC. Vitamin C, an essential nutrient provided with food or as a dietary supplement, is a well-known antioxidant and a scavenger of reactive oxygen species; however, at high doses, it can induce pro-oxidant effects, acting through multiple biological mechanisms that play a crucial role in killing cancer cells. Although experimental data and, less consistently, clinical studies, suggest the possibility of antineoplastic effects of vitamin C at pharmacological doses, the antitumor efficacy of this nutrient in TC remains at least partly unexplored. Therefore, this review discusses the current state of knowledge on the role of vitamin C, alone or in combination with other conventional therapies, in the management of TC, the mechanisms underlying this association, and the perspectives that may emerge in TC treatment strategies, and, also, in light of the development of novel functional foods useful to this extent, by implementing novel sensory analysis strategies.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
3
|
Batool M, Khan NU, Khan H, Almutairi MH, Ali I, Adams BD. BRAF and RET polymorphism association with thyroid cancer risk, a preliminary study from Khyber Pakhtunkhwa population. Mol Biol Rep 2024; 51:502. [PMID: 38598020 DOI: 10.1007/s11033-024-09480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Thyroid cancer, originating in the neck's thyroid gland, encompasses various types. Genetic mutations, particularly in BRAF and RET genes are crucial in its development. This study investigates the association between BRAF (rs113488022) and RET (rs77709286) polymorphisms and thyroid cancer risk in the Khyber Pakhtunkhwa (KP) population. METHODS Blood samples from 100 thyroid cancer patients and 100 healthy controls were genotyped using ARMS-PCR followed by gel electrophoresis and statistical analysis. RESULTS Analysis revealed a significant association between the minor allele T of BRAF (rs113488022) and thyroid cancer risk (P = 0.0001). Both genotypes of BRAF (rs113488022) showed significant associations with thyroid cancer risk (AT; P = 0.0012 and TT; P = 0.045). Conversely, the minor allele G of RET (rs77709286) exhibited a non-significant association with thyroid cancer risk (P = 0.2614), and neither genotype showed significant associations (CG; P = 0.317, GG; P = 0.651). Demographic and clinical parameters analysis using SPSS showed a non-significant association between BRAF and RET variants and age group (P = 0.878 and P = 0.536), gender (P = 0.587 and P = 0.21), tumor size (P = 0.796 and P = 0.765), or tumor localization (P = 0.689 and P = 0.727). CONCLUSION In conclusion, this study emphasizes the significant association between BRAF polymorphism and thyroid cancer risk, while RET polymorphism showed a less pronounced impact. Further validation using larger and specific datasets is essential to establish conclusive results.
Collapse
Affiliation(s)
- Maryam Batool
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, P.O. Box: 25130, Peshawar, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, P.O. Box: 25130, Peshawar, Pakistan.
| | - Hamza Khan
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, P.O. Box: 25130, Peshawar, Pakistan
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| | - Brian D Adams
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, USA
| |
Collapse
|
4
|
Wang F, Lin Y, Xu J, Wei F, Huang S, Wen S, Zhou H, Jiang Y, Wang H, Ling W, Li X, Yang X. Risk of papillary thyroid carcinoma and nodular goiter associated with exposure to semi-volatile organic compounds: A multi-pollutant assessment based on machine learning algorithms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169962. [PMID: 38219999 DOI: 10.1016/j.scitotenv.2024.169962] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Exposure to semi-volatile organic compounds (SVOCs) may link to thyroid nodule risk, but studies of mixed-SVOCs exposure effects are lacking. Traditional analytical methods are inadequate for dealing with mixed exposures, while machine learning (ML) seems to be a good way to fill the gaps in the field of environmental epidemiology research. OBJECTIVES Different ML algorithms were used to explore the relationship between mixed-SVOCs exposure and thyroid nodule. METHODS A 1:1:1 age- and gender-matched case-control study was conducted in which 96 serum SVOCs were measured in 50 papillary thyroid carcinoma (PTC), 50 nodular goiters (NG), and 50 controls. Different ML techniques such as Random Forest, AdaBoost were selected based on their predictive power, and variables were selected based on their weights in the models. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to assess the mixed effects of the SVOCs exposure on thyroid nodule. RESULTS Forty-three of 96 SVOCs with detection rate >80 % were included in the analysis. ML algorithms showed a consistent selection of SVOCs associated with thyroid nodule. Fluazifop-butyl and fenpropathrin are positively associated with PTC and NG in single compound models (all P < 0.05). WQS model shows that exposure to mixed-SVOCs was associated with an increased risk of PTC and NG, with the mixture dominated by fenpropathrin, followed by fluazifop-butyl and propham. In the BKMR model, mixtures showed a significant positive association with thyroid nodule risk at high exposure levels, and fluazifop-butyl showed positive effects associated with PTC and NG. CONCLUSION This study confirms the feasibility of ML methods for variable selection in high-dimensional complex data and showed that mixed exposure to SVOCs was associated with increased risk of PTC and NG. The observed association was primarily driven by fluazifop-butyl and fenpropathrin. The findings warranted further investigation.
Collapse
Affiliation(s)
- Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yuanxin Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Jianing Xu
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Fugui Wei
- Department of Head and Neck Surgery, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Simei Huang
- School of Science, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Shifeng Wen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Huijiao Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yuwei Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Haoyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Wenlong Ling
- Department of Thyroid Surgery, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xiangzhi Li
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China.
| |
Collapse
|