1
|
Fan YG, Guo C, Zhao LX, Ge RL, Pang ZQ, He DL, Ren H, Wu TY, Zhang YH, Wang ZY. Astrocyte-derived lactoferrin reduces β-amyloid burden by promoting the interaction between p38 kinase and PP2A phosphatase in male APP/PS1 transgenic mice. Br J Pharmacol 2024; 181:896-913. [PMID: 37309219 DOI: 10.1111/bph.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/23/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Overexpression of astrocytic lactoferrin (Lf) was observed in the brain of Alzheimer's disease (AD) patients, whereas the role of astrocytic Lf in AD progression remains unexplored. In this study, we aimed to evaluate the effects of astrocytic Lf on AD progression. EXPERIMENTAL APPROACH Male APP/PS1 mice with astrocytes overexpressing human Lf were developed to evaluate the effects of astrocytic Lf on AD progression. N2a-sw cells also were employed to further uncover the mechanism of astrocytic Lf on β-amyloid (Aβ) production. KEY RESULTS Astrocytic Lf overexpression increased protein phosphatase 2A (PP2A) activity and reduced amyloid precursor protein (APP) phosphorylation, Aβ burden and tau hyperphosphorylation in APP/PS1 mice. Mechanistically, astrocytic Lf overexpression promoted the uptake of astrocytic Lf into neurons in APP/PS1 mice, and conditional medium from astrocytes overexpressing Lf inhibited p-APP (Thr668) expression in N2a-sw cells. Furthermore, recombinant human Lf (hLf) significantly enhanced PP2A activity and inhibited p-APP expression, whereas inhibition of p38 or PP2A activities abrogated the hLf-induced p-APP down-regulation in N2a-sw cells. Additionally, hLf promoted the interaction of p38 and PP2A via p38 activation, thereby enhancing PP2A activity, and low-density lipoprotein receptor-related protein 1 (LRP1) knockdown significantly reversed the hLf-induced p38 activation and p-APP down-regulation. CONCLUSIONS AND IMPLICATIONS Our data suggested that astrocytic Lf promoted neuronal p38 activation, via targeting to LRP1, subsequently promoting p38 binding to PP2A to enhance PP2A enzyme activity, which finally inhibited Aβ production via APP dephosphorylation. In conclusion, promoting astrocytic Lf expression may be a potential strategy against AD. LINKED ARTICLES This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Ri-Le Ge
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Zhong-Qiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Da-Long He
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yan-Hui Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| |
Collapse
|
2
|
López-Grueso MJ, Padilla CA, Bárcena JA, Requejo-Aguilar R. Deficiency of Parkinson's Related Protein DJ-1 Alters Cdk5 Signalling and Induces Neuronal Death by Aberrant Cell Cycle Re-entry. Cell Mol Neurobiol 2023; 43:757-769. [PMID: 35182267 PMCID: PMC9958167 DOI: 10.1007/s10571-022-01206-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
DJ-1 is a multifunctional protein involved in Parkinson disease (PD) that can act as antioxidant, molecular chaperone, protease, glyoxalase, and transcriptional regulator. However, the exact mechanism by which DJ-1 dysfunction contributes to development of Parkinson's disease remains elusive. Here, using a comparative proteomic analysis between wild-type cortical neurons and neurons lacking DJ-1 (data available via ProteomeXchange, identifier PXD029351), we show that this protein is involved in cell cycle checkpoints disruption. We detect increased amount of p-tau and α-synuclein proteins, altered phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) signalling pathways, and deregulation of cyclin-dependent kinase 5 (Cdk5). Cdk5 is normally involved in dendritic growth, axon formation, and the establishment of synapses, but can also contribute to cell cycle progression in pathological conditions. In addition, we observed a decrease in proteasomal activity, probably due to tau phosphorylation that can also lead to activation of mitogenic signalling pathways. Taken together, our findings indicate, for the first time, that aborted cell cycle re-entry could be at the onset of DJ-1-associated PD. Therefore, new approaches targeting cell cycle re-entry can be envisaged to improve current therapeutic strategies.
Collapse
Affiliation(s)
- María José López-Grueso
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - Carmen Alicia Padilla
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain ,grid.428865.50000 0004 0445 6160Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - José Antonio Bárcena
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain ,grid.428865.50000 0004 0445 6160Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14071, Córdoba, Spain. .,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain.
| |
Collapse
|
3
|
Gutiérrez‑Vargas J, Castro‑Álvarez J, Zapata‑Berruecos J, Abdul‑Rahim K, Arteaga‑Noriega A. Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review). Biomed Rep 2022; 16:27. [PMID: 35251614 PMCID: PMC8889542 DOI: 10.3892/br.2022.1510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
The cytoskeleton is the main intracellular structure that determines the morphology of neurons and maintains their integrity. Therefore, disruption of its structure and function may underlie several neurodegenerative diseases. This review summarizes the current literature on the tau protein, microtubule-associated protein 2 (MAP2) and neurofilaments as common denominators in pathological conditions such as Alzheimer's disease (AD), cerebral ischemia, and multiple sclerosis (MS). Insights obtained from experimental models using biochemical and immunocytochemical techniques highlight that changes in these proteins may be potentially used as protein targets in clinical settings, which provides novel opportunities for the detection, monitoring and treatment of patients with these neurodegenerative diseases.
Collapse
Affiliation(s)
- Johanna Gutiérrez‑Vargas
- Neuroscience and Aging Group (GISAM), Faculty of Health Sciences, Life Sciences Laboratory, Remington University Corporation, Medellín 050023, Colombia
| | - John Castro‑Álvarez
- Neuroscience and Aging Group (GISAM), Faculty of Health Sciences, Life Sciences Laboratory, Remington University Corporation, Medellín 050023, Colombia
| | - Jose Zapata‑Berruecos
- INDEC‑CES Research Group, Neurological Institute of Colombia, Medellín 050023, Colombia
| | | | - Anibal Arteaga‑Noriega
- Family and Community Health Group, Faculty of Health Sciences, Life Sciences Laboratory, Remington University Corporation, Medellín 050023, Colombia
| |
Collapse
|
4
|
Tashima T. Delivery of Intravenously Administered Antibodies Targeting Alzheimer's Disease-Relevant Tau Species into the Brain Based on Receptor-Mediated Transcytosis. Pharmaceutics 2022; 14:411. [PMID: 35214143 PMCID: PMC8876001 DOI: 10.3390/pharmaceutics14020411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss, cognitive decline, and eventually dementia. The etiology of AD and its pathological mechanisms remain unclear due to its complex pathobiology. At the same time, the number of patients with AD is increasing worldwide. However, no therapeutic agents for AD are currently available for definitive care. Several phase 3 clinical trials using agents targeting amyloid β (Aβ) and its related molecules have failed, with the exception of aducanumab, an anti-Aβ monoclonal antibody (mAb), clinically approved by the US Food and Drug Administration in 2021, which could be modified for AD drug development due to controversial approval. Neurofibrillary tangles (NFTs) composed of tau rather than senile plaques composed of Aβ are correlated with AD pathogenesis. Moreover, Aβ and tau pathologies initially proceed independently. At a certain point in the progression of AD symptoms, the Aβ pathology is involved in the alteration and spreading of the tau pathology. Therefore, tau-targeting therapies have attracted the attention of pharmaceutical scientists, as well as Aβ-targeting therapies. In this review, I introduce the implementations and potential of AD immunotherapy using intravenously administered anti-tau and anti-receptor bispecific mAbs. These cross the blood-brain barrier (BBB) based on receptor-mediated transcytosis and are subsequently cleared by microglia based on Fc-mediated endocytosis after binding to tau and lysosomal degradation.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
5
|
Pharmacological relevance of CDK inhibitors in Alzheimer's disease. Neurochem Int 2021; 148:105115. [PMID: 34182065 DOI: 10.1016/j.neuint.2021.105115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Evidence suggests that cell cycle activation plays a role in the pathophysiology of neurodegenerative diseases. Alzheimer's disease is a progressive, terminal neurodegenerative disease that affects memory and other important mental functions. Intracellular deposition of Tau protein, a hyperphosphorylated form of a microtubule-associated protein, and extracellular aggregation of Amyloid β protein, which manifests as neurofibrillary tangles (NFT) and senile plaques, respectively, characterize this condition. In recent years, however, several studies have concluded that cell cycle re-entry is one of the key causes of neuronal death in the pathogenesis of Alzheimer's disease. The eukaryotic cell cycle is well-coordinated machinery that performs critical functions in cell replenishment, such as DNA replication, cell creation, repair, and the birth of new daughter cells from the mother cell. The complex interplay between the levels of various cyclins and cyclin-dependent kinases (CDKs) at different checkpoints is needed for cell cycle synchronization. CDKIs (cyclin-dependent kinase inhibitors) prevent cyclin degradation and CDK inactivation. Different external and internal factors regulate them differently, and they have different tissue expression and developmental functions. The checkpoints ensure that the previous step is completed correctly before starting the new cell cycle phase, and they protect against the transfer of defects to the daughter cells. Due to the development of more selective and potent ATP-competitive CDK inhibitors, CDK inhibitors appear to be on the verge of having a clinical impact. This avenue is likely to yield new and effective medicines for the treatment of cancer and other neurodegenerative diseases. These new methods for recognizing CDK inhibitors may be used to create non-ATP-competitive agents that target CDK4, CDK5, and other CDKs that have been recognized as important therapeutic targets in Alzheimer's disease treatment.
Collapse
|
6
|
A Novel NMDA Receptor Antagonist Protects against Cognitive Decline Presented by Senescent Mice. Pharmaceutics 2020; 12:pharmaceutics12030284. [PMID: 32235699 PMCID: PMC7151078 DOI: 10.3390/pharmaceutics12030284] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia. Non-competitive N-Methyl-D-aspartate (NMDA) receptor antagonist memantine improved cognition and molecular alterations after preclinical treatment. Nevertheless, clinical results are discouraging. In vivo efficacy of the RL-208, a new NMDA receptor blocker described recently, with favourable pharmacokinetic properties was evaluated in Senescence accelerated mice prone 8 (SAMP8), a mice model of late-onset AD (LOAD). Oral administration of RL-208 improved cognitive performance assessed by using the three chamber test (TCT), novel object recognition test (NORT), and object location test (OLT). Consistent with behavioural results, RL-208 treated-mice groups significantly changed NMDAR2B phosphorylation state levels but not NMDAR2A. Calpain-1 and Caspase-3 activity was reduced, whereas B-cell lymphoma-2 (BCL-2) levels increased, indicating reduced apoptosis in RL-208 treated SAMP8. Superoxide Dismutase 1 (SOD1) and Glutathione Peroxidase 1 (GPX1), as well as a reduction of hydrogen peroxide (H2O2), was also determined in RL-208 mice. RL-208 treatment induced an increase in mature brain-derived neurotrophic factor (mBDNF), prevented Tropomyosin-related kinase B full-length (TrkB-FL) cleavage, increased protein levels of Synaptophysin (SYN) and Postsynaptic density protein 95 (PSD95). In whole, these results point out to an improvement in synaptic plasticity. Remarkably, RL-208 also decreased the protein levels of Cyclin-Dependent Kinase 5 (CDK5), as well as p25/p35 ratio, indicating a reduction in kinase activity of CDK5/p25 complex. Consequently, lower levels of hyperphosphorylated Tau (p-Tau) were found. In sum, these results demonstrate the neuroprotectant role of RL-208 through NMDAR blockade.
Collapse
|
7
|
He H, Huang W, Wang R, Lin Y, Guo Y, Deng J, Deng H, Zhu Y, Allen EG, Jin P, Duan R. Amyotrophic Lateral Sclerosis-associated GGGGCC repeat expansion promotes Tau phosphorylation and toxicity. Neurobiol Dis 2019; 130:104493. [PMID: 31176718 DOI: 10.1016/j.nbd.2019.104493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Microtubule-associated protein Tau (MAPT) and GGGGCC (G4C2) repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) are the major known genetic causes of frontotemporal dementia (FTD) and other neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS). Although expanded G4C2 repeats and Tau traditionally are associated with different clinical presentations, pathological and genetic studies have suggested a strong association between them. Here we demonstrate a strong genetic interaction between expanded G4C2 repeats and Tau. We found that co-expression of expanded G4C2 repeats and Tau could produce a synergistic deterioration of rough eyes, motor function, life span and neuromuscular junction morphological abnormalities in Drosophila. Mechanistically, compared with the normal allele containing (G4C2)3 repeats, the (G4C2)30 allele increased Tau phosphorylation levels and promoted Tau R406W aggregation. These results together suggest a potential crosstalk between expanded G4C2 repeats and Tau in modulating neurodegeneration.
Collapse
Affiliation(s)
- Hua He
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wen Huang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Ruoxi Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yunting Lin
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yichen Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jing Deng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Haitao Deng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yanping Zhu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Ranhui Duan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
8
|
Chapman DE, Reddy BJN, Huy B, Bovyn MJ, Cruz SJS, Al-Shammari ZM, Han H, Wang W, Smith DS, Gross SP. Regulation of in vivo dynein force production by CDK5 and 14-3-3ε and KIAA0528. Nat Commun 2019; 10:228. [PMID: 30651536 PMCID: PMC6335402 DOI: 10.1038/s41467-018-08110-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
Single-molecule cytoplasmic dynein function is well understood, but there are major gaps in mechanistic understanding of cellular dynein regulation. We reported a mode of dynein regulation, force adaptation, where lipid droplets adapt to opposition to motion by increasing the duration and magnitude of force production, and found LIS1 and NudEL to be essential. Adaptation reflects increasing NudEL-LIS1 utilization; here, we hypothesize that such increasing utilization reflects CDK5-mediated NudEL phosphorylation, which increases the dynein-NudEL interaction, and makes force adaptation possible. We report that CDK5, 14-3-3ε, and CDK5 cofactor KIAA0528 together promote NudEL phosphorylation and are essential for force adaptation. By studying the process in COS-1 cells lacking Tau, we avoid confounding neuronal effects of CDK5 on microtubules. Finally, we extend this in vivo regulatory pathway to lysosomes and mitochondria. Ultimately, we show that dynein force adaptation can control the severity of lysosomal tug-of-wars among other intracellular transport functions involving high force. Dynein plays roles in vesicular, organelle, chromosomal and nuclear transport but so far it is unclear how dynein activity in cells is regulated. Here authors study several dynein cofactors and their role in force adaptation of dynein during lipid droplet, lysosomal, and mitochondrial transport.
Collapse
Affiliation(s)
- Dail E Chapman
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Babu J N Reddy
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Bunchhin Huy
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Matthew J Bovyn
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Stephen John S Cruz
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Zahraa M Al-Shammari
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Han Han
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Wenqi Wang
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Deanna S Smith
- Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Steven P Gross
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA.
| |
Collapse
|
9
|
Hyun HW, Min SJ, Kim JE. CDK5 inhibitors prevent astroglial apoptosis and reactive astrogliosis by regulating PKA and DRP1 phosphorylations in the rat hippocampus. Neurosci Res 2017; 119:24-37. [PMID: 28153522 DOI: 10.1016/j.neures.2017.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
Abstract
Status epilepticus (SE) results in the unique pattern of dynamin-related protein 1 (DRP1)-mediated mitochondrial dynamics, which is associated with astroglial apoptosis and reactive astrogliosis in the regional-specific pattern representing the differential astroglial properties. However, less defined are the epiphenomena/upstream effecters for DRP1 phosphorylation in this process. Since cyclin-dependent kinase 5 (CDK5) is involved in reactive astrogliosis, CDK5 is one of the possible upstream regulators for DRP1 phosphorylation. In the present study, both olomoucine and roscovitine (CDK5 inhibitors) effectively ameliorated SE-induced astroglial apoptosis in the dentate gyrus without changed seizure susceptibility. In addition, they inhibited reactive astrogliosis in the CA1 region independent of neuronal death induced by SE. These effects of CDK5 inhibitors were relevant to abrogation of altered DRP1 phosphorylation ratio and mitochondrial length induced by SE. CDK5 inhibitors also negatively regulated protein kinase A (PKA) activity in astrocytes. Therefore, our findings suggest that CDK5 inhibitors may mitigate astroglial apoptosis and reactive astrogliosis accompanied by modulations of DRP1-mediated mitochondrial dynamics.
Collapse
Affiliation(s)
- Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| |
Collapse
|
10
|
Zhang ZH, Chen C, Wu QY, Zheng R, Chen Y, Liu Q, Ni JZ, Song GL. Selenomethionine Ameliorates Neuropathology in the Olfactory Bulb of a Triple Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2016; 17:ijms17101595. [PMID: 27689994 PMCID: PMC5085628 DOI: 10.3390/ijms17101595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/23/2016] [Accepted: 09/13/2016] [Indexed: 01/08/2023] Open
Abstract
Olfactory dysfunction is an early and common symptom in Alzheimer's disease (AD) and is reported to be related to several pathologic changes, including the deposition of Aβ and hyperphosphorylated tau protein as well as synaptic impairment. Selenomethionine (Se-Met), the major form of selenium in animals and humans, may be a promising therapeutic option for AD as it decreases the deposition of Aβ and tau hyperphosphorylation in a triple transgenic mouse model of AD (3× Tg-AD). In this study, 4-month-old AD mice were treated with 6 µg/mL Se-Met in drinking water for 12 weeks and the effect of Se-Met on neuropathological deficits in olfactory bulb (OB) of 3× Tg-AD mice was investigated. The administration of Se-Met effectively decreased the production and deposition of Aβ by inhibiting β-site amyloid precursor protein cleaving enzyme 1 (BACE1)-regulated amyloid precursor protein (APP) processing and reduced the level of total tau and phosphorylated tau, which depended on depressing the activity and expression of glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (CDK5). Meanwhile, Se-Met reduced glial activation, relieved neuroinflammation and attenuated neuronal cell death in the OB of AD mice. So Se-Met could improve pathologic changes of AD in the OB, which further demonstrated the potential therapeutic effect of Se-Met in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Changchun 130022, China.
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Qiu-Yan Wu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Rui Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Yao Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jia-Zuan Ni
- Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Changchun 130022, China.
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
Neuroprotective effects of Cerebrolysin in triple repeat Tau transgenic model of Pick's disease and fronto-temporal tauopathies. BMC Neurosci 2015; 16:85. [PMID: 26611895 PMCID: PMC4662012 DOI: 10.1186/s12868-015-0218-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tauopathies are a group of neurodegenerative disorders with accumulation of three-repeat (3R) or four-repeat (4R) Tau. While 3R tau is found in Pick's disease and Alzheimer's disease (AD), 4R tau is more abundant in corticobasal degeneration, progressive supranuclear palsy, and AD. We have previously shown that Cerebrolysin™ (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the pathology in amyloid precursor protein transgenic (tg) mouse model of AD and 4R tau, however it is unclear if CBL ameliorates the deficits and neuropathology in the mouse model of Pick's disease over expressing 3R tau. RESULTS Mice expressing 3R tau (L266V and G272V mutations) under the mThy-1 promoter were treated with CBL in two separate groups, the first was 3 months old (treated for 3 months, IP) and the second was 6 months old (treated for 3 months, IP) at the start of the treatment. We found that although the levels of total 3R tau were unchanged, CBL reduced the levels of hyper-phosphorylated tau in both groups of mice. This was accompanied by reduced neurodegenerative pathology in the neocortex and hippocampus in both groups and by improvements in the behavioral deficits in the nest-building test and water maze in the 3-6 month group. CONCLUSION Taken together these results support the notion that CBL may be beneficial in other taupathy models by reducing the levels of aberrantly phosphorylated tau.
Collapse
|
12
|
Alvarez-Miranda EA, Sinnl M, Farhan H. Alteration of Golgi Structure by Stress: A Link to Neurodegeneration? Front Neurosci 2015; 9:435. [PMID: 26617486 PMCID: PMC4641911 DOI: 10.3389/fnins.2015.00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022] Open
Abstract
The Golgi apparatus is well-known for its role as a sorting station in the secretory pathway as well as for its role in regulating post-translational protein modification. Another role for the Golgi is the regulation of cellular signaling by spatially regulating kinases, phosphatases, and GTPases. All these roles make it clear that the Golgi is a central regulator of cellular homeostasis. The response to stress and the initiation of adaptive responses to cope with it are fundamental abilities of all living cells. It was shown previously that the Golgi undergoes structural rearrangements under various stress conditions such as oxidative or osmotic stress. Neurodegenerative diseases are also frequently associated with alterations of Golgi morphology and many stress factors have been described to play an etiopathological role in neurodegeneration. It is however unclear whether the stress-Golgi connection plays a role in neurodegenerative diseases. Using a combination of bioinformatics modeling and literature mining, we will investigate evidence for such a tripartite link and we ask whether stress-induced Golgi arrangements are cause or consequence in neurodegeneration.
Collapse
Affiliation(s)
| | - Markus Sinnl
- Department of Statistics and Operations Research, University of Vienna Vienna, Austria
| | - Hesso Farhan
- Biotechnology Institute Thurgau Kreuzlingen, Switzerland ; Department of Biology, University of Konstanz Konstanz, Germany
| |
Collapse
|
13
|
Li YQ, Tan MS, Yu JT, Tan L. Frontotemporal Lobar Degeneration: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2015; 53:6091-6105. [PMID: 26537902 DOI: 10.1007/s12035-015-9507-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is characterized by progressive deterioration of frontal and anterior temporal lobes of the brain and often exhibits frontotemporal dementia (FTD) on clinic, in <65-year-old patients at the time of diagnosis. Interdisciplinary approaches combining genetics, molecular and cell biology, and laboratory animal science have revealed some of its potential molecular mechanisms. Although there is still no effective treatment to delay, prevent, and reverse the progression of FTD, emergence of agents targeting molecular mechanisms has been beginning to promote potential pharmaceutical development. Our review summarizes the latest new findings of FTLD and challenges in FTLD therapy.
Collapse
Affiliation(s)
- Ya-Qing Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Therapeutic Actions of the Thiazolidinediones in Alzheimer's Disease. PPAR Res 2015; 2015:957248. [PMID: 26587016 PMCID: PMC4637502 DOI: 10.1155/2015/957248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial metabolic brain disorder characterized by protein aggregates, synaptic failure, and cognitive impairment. In the AD brain is common to observe the accumulation of senile plaques formed by amyloid-beta (Aβ) peptide and the neurofibrillary tangles composed of modified tau protein, which both lead to cellular damage and progressive neurodegeneration. Currently, there is no effective therapy for AD; however several studies have shown that the treatments with the peroxisome proliferators activated receptor-gamma (PPARγ) agonists known as thiazolidinedione drugs (TZDs), like rosiglitazone and pioglitazone, attenuate neurodegeneration and improve cognition in mouse models and patients with mild-to-moderate AD. Furthermore, studies on animal models have shown that TZDs inhibit neuroinflammation, facilitate amyloid-β plaque clearance, enhance mitochondrial function, improve synaptic plasticity, and, more recently, attenuate tau hyperphosphorylation. How TZDs may improve or reduce these pathologic signs of AD and what the mechanisms and the implicated pathways in which these drugs work are are questions that remain to be answered. However, in this review, we will discuss several cellular targets, in which TZDs can be acting against the neurodegeneration.
Collapse
|
15
|
Abstract
Alzheimer's disease (AD) is known as the most fatal chronic neurodegenerative disease in adults along with progressive loss of memory and other cognitive function disorders. Cyclin-dependent kinase 5 (Cdk5), a unique member of the cyclin-dependent kinases (Cdks), is reported to intimately associate with the process of the pathogenesis of AD. Cdk5 is of vital importance in the development of CNS and neuron movements such as neuronal migration and differentiation, synaptic functions, and memory consolidation. However, when neurons suffer from pathological stimuli, Cdk5 activity becomes hyperactive and causes aberrant hyperphosphorylation of various substrates of Cdk5 like amyloid precursor protein (APP), tau and neurofilament, resulting in neurodegenerative diseases like AD. Deregulation of Cdk5 contributes to an array of pathological events in AD, ranging from formation of senile plaques and neurofibrillary tangles, synaptic damage, mitochondrial dysfunction to cell cycle reactivation as well as neuronal cell apoptosis. More importantly, an inhibition of Cdk5 activity with inhibitors such as RNA inference (RNAi) could protect from memory decline and neuronal cell loss through suppressing β-amyloid (Aβ)-induced neurotoxicity and tauopathies. This review will briefly describe the above-mentioned possible roles of Cdk5 in the physiological and pathological mechanisms of AD, further discussing recent advances and challenges in Cdk5 as a therapeutic target.
Collapse
|
16
|
Yushan R, Wenjie C, Suning H, Yiwu D, Tengfei Z, Madushi WM, Feifei L, Changwen Z, Xin W, Roodrajeetsing G, Zuyun L, Gang C. Insights into the clinical value of cyclin-dependent kinase 5 in glioma: a retrospective study. World J Surg Oncol 2015. [PMID: 26205145 PMCID: PMC4513965 DOI: 10.1186/s12957-015-0629-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Previous studies suggested that expression of cyclin-dependent kinase 5 (CDK5) may promote the migration and invasion of human glioma cells. In this study, we aimed to evaluate the clinical value of CDK5 in different grades of glioma in relation to Ki-67 labeling index (LI). Methods We firstly assessed by immunohistochemistry the expression of CDK5 in 152 glioma tissues and 16 normal brain tissues and further explored the relationship between CDK5 expression and other clinical features. Results The positive ratio of CDK5 in gliomas (57.2 %) was higher than that in normal brain tissues (12.5 %, P = 0.001). Difference of CDK5 expression among four World Health Organization (WHO) grades was statistically significant (P = 0.001). The significant differences of CDK5 expression were also observed between WHO I glioma (34.8 %) and WHO III glioma (62.5 %), as well as WHO IV glioma (82.8 %; P = 0.026, P < 0.001, respectively). Furthermore, Spearman’s rank correlation confirmed that CDK5 was positively correlated with the pathological grade of glioma (r = 0.831, P < 0.001). The CDK5 expression was also positively correlated with Ki-67 LI (r = 0.347, P < 0.001). Conclusions The current result suggests that CDK5 may play an essential role in the tumorigenesis and aggressiveness of gliomas.
Collapse
Affiliation(s)
- Ruan Yushan
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Chen Wenjie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Huang Suning
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Dang Yiwu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Zhong Tengfei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Wickramaarachchi Mihiranganee Madushi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Luo Feifei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Zhang Changwen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Wen Xin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Gopaul Roodrajeetsing
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Li Zuyun
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China.
| | - Chen Gang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China.
| |
Collapse
|
17
|
Posada-Duque RA, Palacio-Castañeda V, Cardona-Gómez GP. CDK5 knockdown in astrocytes provide neuroprotection as a trophic source via Rac1. Mol Cell Neurosci 2015; 68:151-66. [PMID: 26160434 DOI: 10.1016/j.mcn.2015.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
Astrocytes perform metabolic and structural support functions in the brain and contribute to the integrity of the blood-brain barrier. Astrocytes influence neuronal survival and prevent gliotoxicity by capturing glutamate (Glu), reactive oxygen species, and nutrients. During these processes, astrocytic morphological changes are supported by actin cytoskeleton remodeling and require the involvement of Rho GTPases, such as Rac1. The protein cyclin-dependent kinase 5 (CDK5) may have a dual effect on astrocytes because it has been shown to be involved in migration, senescence, and the dysfunction of glutamate recapture; however, its role in astrocytes remains unclear. Treating a possible deregulation of CDK5 with RNAi is a strategy that has been proposed as a therapy for neurodegenerative diseases. Models of glutamate gliotoxicity in the C6 astroglioma cell line, primary cultures of astrocytes, and co-cultures with neurons were used to analyze the effects of CDK5 RNAi in astrocytes and the role of Rac1 in neuronal viability. In C6 cells and primary astrocytes, CDK5 RNAi prevented the cell death generated by glutamate-induced gliotoxicity, and this finding was corroborated by pharmacological inhibition with roscovitine. This effect was associated with the appearance of lamellipodia, protrusions, increased cell area, stellation, Rac1 activation, BDNF release, and astrocytic protection in neurons that were exposed to glutamate excitotoxicity. Interestingly, Rac1 inhibition in astrocytes blocked BDNF upregulation and the astrocyte-mediated neuroprotection. Actin cytoskeleton remodeling and stellation may be a functional phenotype for BDNF release that promotes neuroprotection. In summary, our findings suggest that CDK5- knockdown in astrocytes acts as a trophic source for neuronal protection in a Rac1-dependent manner.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia
| | - Valentina Palacio-Castañeda
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia.
| |
Collapse
|
18
|
Posada-Duque RA, López-Tobón A, Piedrahita D, González-Billault C, Cardona-Gomez GP. p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J Neurochem 2015; 134:354-70. [PMID: 25864429 DOI: 10.1111/jnc.13127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 01/27/2023]
Abstract
CDK5 plays an important role in neurotransmission and synaptic plasticity in the normal function of the adult brain, and dysregulation can lead to Tau hyperphosphorylation and cognitive impairment. In a previous study, we demonstrated that RNAi knock down of CDK5 reduced the formation of neurofibrillary tangles (NFT) and prevented neuronal loss in triple transgenic Alzheimer's mice. Here, we report that CDK5 RNAi protected against glutamate-mediated excitotoxicity using primary hippocampal neurons transduced with adeno-associated virus 2.5 viral vector eGFP-tagged scrambled or CDK5 shRNA-miR during 12 days. Protection was dependent on a concomitant increase in p35 and was reversed using p35 RNAi, which affected the down-stream Rho GTPase activity. Furthermore, p35 over-expression and constitutively active Rac1 mimicked CDK5 silencing-induced neuroprotection. In addition, 3xTg-Alzheimer's disease mice (24 months old) were injected in the hippocampus with scrambled or CDK5 shRNA-miR, and spatial learning and memory were performed 3 weeks post-injection using 'Morris' water maze test. Our data showed that CDK5 knock down induced an increase in p35 protein levels and Rac activity in triple transgenic Alzheimer's mice, which correlated with the recovery of cognitive function; these findings confirm that increased p35 and active Rac are involved in neuroprotection. In summary, our data suggest that p35 acts as a mediator of Rho GTPase activity and contributes to the neuroprotection induced by CDK5 RNAi.
Collapse
Affiliation(s)
- Rafael Andres Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, Calle 70 N°. 52-21, University of Antioquia UdeA, Medellín, Colombia
| | - Alejandro López-Tobón
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, Calle 70 N°. 52-21, University of Antioquia UdeA, Medellín, Colombia
| | - Diego Piedrahita
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, Calle 70 N°. 52-21, University of Antioquia UdeA, Medellín, Colombia
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Laboratory of Cell and Neuronal Dynamics, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Gloria Patricia Cardona-Gomez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, Calle 70 N°. 52-21, University of Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
19
|
Castro-Alvarez JF, Uribe-Arias A, Cardona-Gómez GP. Cyclin-Dependent kinase 5 targeting prevents β-Amyloid aggregation involving glycogen synthase kinase 3β and phosphatases. J Neurosci Res 2015; 93:1258-66. [PMID: 25711385 DOI: 10.1002/jnr.23576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/24/2023]
Abstract
Inappropriate activation of cyclin-dependent kinase 5 (CDK5) resulting from proteolytic release of the activator fragment p25 from the membrane contributes to the formation of neurofibrillary tangles, β-amyloid (βA) aggregation, and chronic neurodegeneration. At 18 months of age, 3× Tg-AD mice were sacrificed after either 3 weeks (short term) or 1 year (long term) of CDK5 knockdown. In short-term-treated animals, CDK5 knockdown reversed βA aggregation in the hippocampi via inhibitory phosphorylation of glycogen synthase kinase 3β Ser9 and activation of phosphatase PP2A. In long-term-treated animals, CDK5 knockdown induced a persistent reduction in CDK5 and prevented βA aggregation, but the effect on amyloid precursor protein processing was reduced, suggesting that yearly booster therapy would be required. These findings further validate CDK5 as a target for preventing or blocking amyloidosis in older transgenic mice.
Collapse
Affiliation(s)
- John Fredy Castro-Alvarez
- Cellular and Molecular Neurobiology Area, Neuroscience Group of Antioquia, Faculty of Medicine, SIU, University of Antioquia, Medellín, Colombia
| | - Alejandro Uribe-Arias
- Cellular and Molecular Neurobiology Area, Neuroscience Group of Antioquia, Faculty of Medicine, SIU, University of Antioquia, Medellín, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Neuroscience Group of Antioquia, Faculty of Medicine, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|