1
|
Nam J, Richie CT, Harvey BK, Voutilainen MH. Delivery of CDNF by AAV-mediated gene transfer protects dopamine neurons and regulates ER stress and inflammation in an acute MPTP mouse model of Parkinson's disease. Sci Rep 2024; 14:16487. [PMID: 39019902 PMCID: PMC11254911 DOI: 10.1038/s41598-024-65735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) and its close structural relative, mesencephalic astrocyte-derived neurotrophic factor (MANF), are proteins with neurotrophic properties. CDNF protects and restores the function of dopamine (DA) neurons in rodent and non-human primate (NHP) toxin models of Parkinson's disease (PD) and therefore shows promise as a drug candidate for disease-modifying treatment of PD. Moreover, CDNF was found to be safe and to have some therapeutic effects on PD patients in phase 1/2 clinical trials. However, the mechanism underlying the neurotrophic activity of CDNF is unknown. In this study, we delivered human CDNF (hCDNF) to the brain using an adeno-associated viral (AAV) vector and demonstrated the neurotrophic effect of AAV-hCDNF in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. AAV-hCDNF resulted in the expression of hCDNF in the striatum (STR) and substantia nigra (SN), and no toxic effects on the nigrostriatal pathway were observed. Intrastriatal injection of AAV-hCDNF reduced motor impairment and partially alleviated gait dysfunction in the acute MPTP mouse model. In addition, gene therapy with AAV-hCDNF had significant neuroprotective effects on the nigrostriatal pathway and decreased the levels of interleukin 1beta (IL-1β) and complement 3 (C3) in glial cells in the acute MPTP mouse model. Moreover, AAV-hCDNF reduced C/EBP homologous protein (CHOP) and glucose regulatory protein 78 (GRP78) expression in astroglia. These results suggest that the neuroprotective effects of CDNF may be mediated at least in part through the regulation of neuroinflammation and the UPR pathway in a mouse MPTP model of PD in vivo.
Collapse
Affiliation(s)
- Jinhan Nam
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Merja H Voutilainen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Cankara FN, Kuş MS, Günaydın C, Şafak S, Bilge SS, Ozmen O, Tural E, Kortholt A. The beneficial effect of salubrinal on neuroinflammation and neuronal loss in intranigral LPS-induced hemi-Parkinson disease model in rats. Immunopharmacol Immunotoxicol 2022; 44:168-177. [PMID: 35021949 DOI: 10.1080/08923973.2021.2023174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Endoplasmic reticulum stress (ERS) and neuroinflammation are triggers for neurodegenerative disorders. Salubrinal is a selective inhibitor of protein phosphatase 1 (PP1) complex involving dephosphorylation of phosphorylated eukaryotic initiation factor-2α (eIF2α), the key crucial pathway in the ERS. Therefore, this study assessed the effects of inhibition of the ERS with salubrinal in the intranigral hemi-Parkinson disease (PD) model. MATERIALS AND METHODS Animals were treated with salubrinal for one week after the PD model was created by intranigral lipopolysaccharide (LPS) administration. Apomorphine-induced rotation, rotarod, cylinder, and pole tests were performed to evaluate behavioral changes. Proinflammatory cytokines and the expression level of the dual specificity protein phosphatase 2 (DUSP2), PP1, and p-eIF2α were evaluated. Nigral expression of inducible nitric oxide synthase (iNOS), nuclear factor kappaB (Nf-κB), and cyclooxygenase (COX)-2 was determined. Finally, tyrosine hydroxylase and caspase-3/ caspase-9 expressions were assessed by immunohistochemistry. RESULTS Salubrinal reduced the motor impairments and dopamine-related behavioral deficiencies caused by the LPS. Salubrinal attenuated the LPS-induced increased levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and salubrinal rescued the loss of TH expression and dopamine levels and prevented the caspase-3/9 increase in the substantial nigra (SN). LPS potently increased iNOS, Nf-κB, and COX-2 expression, but this effect was reduced after salubrinal treatment. Additionally, salubrinal attenuated the LPS-induced PP1 and DUSP2 increase. CONCLUSION Our results reveal that salubrinal is attenuating several inflammatory mediators and thereby decreased the inflammatory effects of LPS in the neurons of the SN. Together this results in increased cellular survival and maintained integrity of SN. Taken together our data show the beneficial effects of inhibition of ERS to restrict neuroinflammatory progression and neuronal loss in a PD model.
Collapse
Affiliation(s)
- Fatma Nihan Cankara
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Innovative Technologies Application and Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Meliha Sümeyye Kuş
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Caner Günaydın
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Sinan Şafak
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Sırrı Bilge
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Emine Tural
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Arjan Kortholt
- Innovative Technologies Application and Research Center, Suleyman Demirel University, Isparta, Turkey.,Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Sabouri S, Liu M, Zhang S, Yao B, Soleimaninejad H, Baxter AA, Armendariz-Vidales G, Subedi P, Duan C, Lou X, Hogan CF, Heras B, Poon IKH, Hong Y. Construction of a Highly Sensitive Thiol-Reactive AIEgen-Peptide Conjugate for Monitoring Protein Unfolding and Aggregation in Cells. Adv Healthc Mater 2021; 10:e2101300. [PMID: 34655462 DOI: 10.1002/adhm.202101300] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Impairment of the protein quality control network leads to the accumulation of unfolded and aggregated proteins. Direct detection of unfolded protein accumulation in the cells may provide the possibility for early diagnosis of neurodegenerative diseases. Here a new platform based on a peptide-conjugated thiol-reactive aggregation-induced emission fluorogen (AIEgen), named MI-BTD-P (or D1), for labeling and tracking unfolded proteins in cells is reported. In vitro experiments with model proteins show that the non-fluorescent D1 only becomes highly fluorescent when reacted with the thiol group of free cysteine (Cys) residues on unfolded proteins but not glutathione or folded proteins with buried or surface exposed Cys. When the labeled unfolded proteins form aggregates, D1 fluorescence intensity is further increased, and fluorescence lifetime is prolonged. D1 is then used to measure unfolded protein loads in cells by flow cytometry and track the aggregate formation of the D1 labeled unfolded proteins using confocal microscopy. In combination with fluorescence lifetime imaging technique, the proteome at different folding statuses can be better differentiated, demonstrating the versatility of this new platform. The rational design of D1 demonstrates the outlook of incorporation of diverse functional groups to achieve maximal sensitivity and selectivity in biological samples.
Collapse
Affiliation(s)
- Soheila Sabouri
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Mengjie Liu
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Shouxiang Zhang
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Bicheng Yao
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Georgina Armendariz-Vidales
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Chong Duan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 4300078, China
| | - Xiaoding Lou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 4300078, China
| | - Conor F Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
4
|
Dogra N, Mani RJ, Katare DP. Protein Interaction Studies for Understanding the Tremor Pathway in Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:780-790. [PMID: 32888283 DOI: 10.2174/1871527319666200905115548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tremor is one of the most noticeable features, which occurs during the early stages of Parkinson's Disease (PD). It is one of the major pathological hallmarks and does not have any interpreted mechanism. In this study, we have framed a hypothesis and deciphered protein- protein interactions between the proteins involved in impairment in sodium and calcium ion channels and thus cause synaptic plasticity leading to a tremor. METHODS Literature mining for retrieval of proteins was done using Science Direct, PubMed Central, SciELO and JSTOR databases. A well-thought approach was used, and a list of differentially expressed proteins in PD was collected from different sources. A total of 71 proteins were retrieved, and a protein interaction network was constructed between them by using Cytoscape.v.3.7. The network was further analysed using the BiNGO plugin for retrieval of overrepresented biological processes in Tremor-PD datasets. Hub nodes were also generated in the network. RESULTS The Tremor-PD pathway was deciphered, which demonstrates the cascade of protein interactions that might lead to tremors in PD. Major proteins involved were LRRK2, TUBA1A, TRAF6, HSPA5, ADORA2A, DRD1, DRD2, SNCA, ADCY5, TH, etc. Conclusion: In the current study, it is predicted that ADORA2A and DRD1/DRD2 are equally contributing to the progression of the disease by inhibiting the activity of adenylyl cyclase and thereby increases the permeability of the blood-brain barrier, causing an influx of neurotransmitters and together they alter the level of dopamine in the brain which eventually leads to tremor.
Collapse
Affiliation(s)
- Nitu Dogra
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ruchi Jakhmola Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepshikha Pande Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201301, India
| |
Collapse
|
5
|
Ji M, Niu S, Guo J, Mi H, Jiang P. Silencing RNF13 Alleviates Parkinson’s Disease – Like Problems in Mouse Models by Regulating the Endoplasmic Reticulum Stress–Mediated IRE1α-TRAF2-ASK1-JNK Pathway. J Mol Neurosci 2020; 70:1977-1986. [DOI: 10.1007/s12031-020-01599-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
|
6
|
Rozpędek-Kamińska W, Siwecka N, Wawrzynkiewicz A, Wojtczak R, Pytel D, Diehl JA, Majsterek I. The PERK-Dependent Molecular Mechanisms as a Novel Therapeutic Target for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E2108. [PMID: 32204380 PMCID: PMC7139310 DOI: 10.3390/ijms21062108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Higher prevalence of neurodegenerative diseases is strictly connected with progressive aging of the world population. Interestingly, a broad range of age-related, neurodegenerative diseases is characterized by a common pathological mechanism-accumulation of misfolded and unfolded proteins within the cells. Under certain circumstances, such protein aggregates may evoke endoplasmic reticulum (ER) stress conditions and subsequent activation of the unfolded protein response (UPR) signaling pathways via the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent manner. Under mild to moderate ER stress, UPR has a pro-adaptive role. However, severe or long-termed ER stress conditions directly evoke shift of the UPR toward its pro-apoptotic branch, which is considered to be a possible cause of neurodegeneration. To this day, there is no effective cure for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), or prion disease. Currently available treatment approaches for these diseases are only symptomatic and cannot affect the disease progression. Treatment strategies, currently under detailed research, include inhibition of the PERK-dependent UPR signaling branches. The newest data have reported that the use of small-molecule inhibitors of the PERK-mediated signaling branches may contribute to the development of a novel, ground-breaking therapeutic approach for neurodegeneration. In this review, we critically describe all the aspects associated with such targeted therapy against neurodegenerative proteopathies.
Collapse
Affiliation(s)
- Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Adam Wawrzynkiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Radosław Wojtczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - J. Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| |
Collapse
|
7
|
Voronin MV, Kadnikov IA, Seredenin SB. Afobazole Restores the Dopamine Level in a 6-Hydroxydopamine Model of Parkinson’s Disease. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Translocator Protein Ligand Protects against Neurodegeneration in the MPTP Mouse Model of Parkinsonism. J Neurosci 2019; 39:3752-3769. [PMID: 30796158 DOI: 10.1523/jneurosci.2070-18.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease, after Alzheimer's disease. Parkinson's disease is a movement disorder with characteristic motor features that arise due to the loss of dopaminergic neurons from the substantia nigra. Although symptomatic treatment by the dopamine precursor levodopa and dopamine agonists can improve motor symptoms, no disease-modifying therapy exists yet. Here, we show that Emapunil (AC-5216, XBD-173), a synthetic ligand of the translocator protein 18, ameliorates degeneration of dopaminergic neurons, preserves striatal dopamine metabolism, and prevents motor dysfunction in female mice treated with the MPTP, as a model of parkinsonism. We found that Emapunil modulates the inositol requiring kinase 1α (IRE α)/X-box binding protein 1 (XBP1) unfolded protein response pathway and induces a shift from pro-inflammatory toward anti-inflammatory microglia activation. Previously, Emapunil was shown to cross the blood-brain barrier and to be safe and well tolerated in a Phase II clinical trial. Therefore, our data suggest that Emapunil may be a promising approach in the treatment of Parkinson's disease.SIGNIFICANCE STATEMENT Our study reveals a beneficial effect of Emapunil on dopaminergic neuron survival, dopamine metabolism, and motor phenotype in the MPTP mouse model of parkinsonism. In addition, our work uncovers molecular networks which mediate neuroprotective effects of Emapunil, including microglial activation state and unfolded protein response pathways. These findings not only contribute to our understanding of biological mechanisms of translocator protein 18 (TSPO) function but also indicate that translocator protein 18 may be a promising therapeutic target. We thus propose to further validate Emapunil in other Parkinson's disease mouse models and subsequently in clinical trials to treat Parkinson's disease.
Collapse
|
9
|
Mo MS, Li GH, Sun CC, Huang SX, Wei L, Zhang LM, Zhou MM, Wu ZH, Guo WY, Yang XL, Chen CJ, Qu SG, He JX, Xu PY. Dopaminergic neurons show increased low-molecular-mass protein 7 activity induced by 6-hydroxydopamine in vitro and in vivo. Transl Neurodegener 2018; 7:19. [PMID: 30128145 PMCID: PMC6097308 DOI: 10.1186/s40035-018-0125-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
Background Abnormal expression of major histocompatibility complex class I (MHC-I) is increased in dopaminergic (DA) neurons in the substantia nigra (SN) in Parkinson’s disease (PD). Low-molecular-mass protein 7 (β5i) is a proteolytic subunit of the immunoproteasome that regulates protein degradation and the MHC pathway in immune cells. Methods In this study, we investigated the role of β5i in DA neurons using a 6-hydroxydopamine (6-OHDA) model in vitro and vivo. Results We showed that 6-OHDA upregulated β5i expression in DA neurons in a concentration- and time-dependent manner. Inhibition and downregulation of β5i induced the expression of glucose-regulated protein (Bip) and exacerbated 6-OHDA neurotoxicity in DA neurons. The inhibition of β5i further promoted the activation of Caspase 3-related pathways induced by 6-OHDA. β5i also activated transporter associated with antigen processing 1 (TAP1) and promoted MHC-I expression on DA neurons. Conclusion Taken together, our data suggest that β5i is activated in DA neurons under 6-OHDA treatment and may play a neuroprotective role in PD. Electronic supplementary material The online version of this article (10.1186/s40035-018-0125-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Shu Mo
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Gui-Hua Li
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Cong-Cong Sun
- 2Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong China
| | - Shu-Xuan Huang
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Lei Wei
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Li-Min Zhang
- 3Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Miao-Miao Zhou
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Zhuo-Hua Wu
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Wen-Yuan Guo
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Xin-Ling Yang
- 4Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011 Xinjiang China
| | - Chao-Jun Chen
- Clinic Brain Center, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800 Guangdong China
| | - Shao-Gang Qu
- 6Department of Blood Transfusion, Fifth Affiliated Hospital Southern Medical University, Guangzhou, 510900 Guangdong China
| | - Jian-Xing He
- 7Department of Thoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China
| | - Ping-Yi Xu
- 1Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong China.,4Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumchi, 830011 Xinjiang China
| |
Collapse
|
10
|
Chiu CC, Lu CS, Weng YH, Chen YL, Huang YZ, Chen RS, Cheng YC, Huang YC, Liu YC, Lai SC, Lin KJ, Lin YW, Chen YJ, Chen CL, Yeh TH, Wang HL. PARK14 (D331Y) PLA2G6 Causes Early-Onset Degeneration of Substantia Nigra Dopaminergic Neurons by Inducing Mitochondrial Dysfunction, ER Stress, Mitophagy Impairment and Transcriptional Dysregulation in a Knockin Mouse Model. Mol Neurobiol 2018; 56:3835-3853. [PMID: 30088174 DOI: 10.1007/s12035-018-1118-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022]
Abstract
PARK14 patients with homozygous (D331Y) PLA2G6 mutation display motor deficits of pure early-onset Parkinson's disease (PD). The aim of this study is to investigate the pathogenic mechanism of mutant (D331Y) PLA2G6-induced PD. We generated knockin (KI) mouse model of PARK14 harboring homozygous (D331Y) PLA2G6 mutation. Then, we investigated neuropathological and neurological phenotypes of PLA2G6D331Y/D331Y KI mice and molecular pathogenic mechanisms of (D331Y) PLA2G6-induced degeneration of substantia nigra (SN) dopaminergic neurons. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice displayed early-onset cell death of SNpc dopaminergic neurons. Lewy body pathology was found in the SN of PLA2G6D331Y/D331Y mice. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice exhibited early-onset parkinsonism phenotypes. Disrupted cristae of mitochondria were found in SNpc dopaminergic neurons of PLA2G6D331Y/D331Y mice. PLA2G6D331Y/D331Y mice displayed mitochondrial dysfunction and upregulated ROS production, which may lead to activation of apoptotic cascade. Upregulated protein levels of Grp78, IRE1, PERK, and CHOP, which are involved in activation of ER stress, were found in the SN of PLA2G6D331Y/D331Y mice. Protein expression of mitophagic proteins, including parkin and BNIP3, was downregulated in the SN of PLA2G6D331Y/D331Y mice, suggesting that (D331Y) PLA2G6 mutation causes mitophagy dysfunction. In the SN of PLA2G6D331Y/D331Y mice, mRNA levels of eight genes that are involved in neuroprotection/neurogenesis were decreased, while mRNA levels of two genes that promote apoptotic death were increased. Our results suggest that PARK14 (D331Y) PLA2G6 mutation causes degeneration of SNpc dopaminergic neurons by causing mitochondrial dysfunction, elevated ER stress, mitophagy impairment, and transcriptional abnormality.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Division of Sports Medicine, Taiwan Landseed Hospital, Taoyuan, Taiwan
| | - Szu-Chia Lai
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Jun Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, No. 252, Wuxing St, Xinyi District, Taipei City, 110, Taiwan. .,School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan. .,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
11
|
Elmazoglu Z, Ergin V, Sahin E, Kayhan H, Karasu C. Oleuropein and rutin protect against 6-OHDA-induced neurotoxicity in PC12 cells through modulation of mitochondrial function and unfolded protein response. Interdiscip Toxicol 2018; 10:129-141. [PMID: 30147420 PMCID: PMC6102676 DOI: 10.1515/intox-2017-0019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a highly prevalent neurodegenerative disorder, often associated with oxidative stress-induced transcriptional changes in dopaminergic neurons. Phenolic antioxidants, oleuropein (OLE) and rutin (RUT) have attracted a great interest due to their potential to counteract oxidative protein aggregation and toxicity. This study aimed at examining the effects of OLE and RUT against 6-OHDA-induced stress response in rat pheochromocytoma cells. When differentiated PC12 cells were exposed to oxidative stress composer 6-OHDA (100 μM, 8 h), a decreased mitochondrial membrane potential (ΔΨm) was observed along with a significant loss of cell viability and apoptotic nuclear changes. Exposure to 6-OHDA resulted in unfolded protein response (UPR) in differentiated PC12 cells as evidenced by an increased level of endoplasmic reticulum (ER)-localized transmembrane signal transducer IRE1α, adaptive response proteins ATF-4 and proapoptotic transcription factor CHOP. OLE or RUT pretreatment (24 h) at low doses (1–50 μM) protected the differentiated PC12 cells from 6-OHDA-induced cytotoxicity as assessed by increased viability, improved ΔΨm and inhibited apoptosis, whereas relatively high doses of OLE or RUT (>50 μM) inhibited cell growth and proliferation, indicating a typical hormetic effect. In hormetic doses, OLE and RUT up-regulated 6-OHDA-induced increase in IRE1α, ATF-4 and inhibited CHOP, PERK, BIP and PDI. 6-OHDA-activated XBP1 splicing was also inhibited by OLE or RUT. The presented results suggest that neuroprotection against 6-OHDA-induced oxidative toxicity may be attributable to neurohormetic effects of OLE or RUT at low doses through regulating mitochondrial functions, controlling persistent protein misfolding, activating and/or amplificating the adaptive response-related signaling pathways, leading to UPR prosurvival output.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Department of Medical Pharmacology, Cellular Stress Response and Signal Transduction Research Laboratory, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Volkan Ergin
- Department of Medical Biology, Erzincan University, Faculty of Medicine, Erzincan, Turkey
| | - Ergin Sahin
- Department of Biology, Ankara University, Faculty of Science, Ankara, Turkey
| | - Handan Kayhan
- Department of Hematology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Cellular Stress Response and Signal Transduction Research Laboratory, Gazi University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Ganguly U, Chakrabarti SS, Kaur U, Mukherjee A, Chakrabarti S. Alpha-synuclein, Proteotoxicity and Parkinson's Disease: Search for Neuroprotective Therapy. Curr Neuropharmacol 2018; 16:1086-1097. [PMID: 29189163 PMCID: PMC6120113 DOI: 10.2174/1570159x15666171129100944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/11/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is a growing body of evidence in animal and cell based models of Parkinson's disease (PD) to suggest that overexpression and / or abnormal accumulation and aggregation of α-synuclein can trigger neuronal death. This important role of α-synuclein in PD pathogenesis is supported by the fact that duplication, triplication and mutations of α-synuclein gene cause familial forms of PD. METHODS A review of literature was performed by searching PubMed and Google Scholar for relevant articles highlighting the pathogenic role of α-synuclein and the potential therapeutic implications of targeting various pathways related to this protein. RESULTS The overexpression and accumulation of α-synuclein within neurons may involve both transcriptional and post-transcriptional mechanisms including a decreased degradation of the protein through proteasomal or autophagic processes. The mechanisms of monomeric α-synuclein aggregating to oligomers and fibrils have been investigated intensively, but it is still not certain which form of this natively unfolded protein is responsible for toxicity. Likewise the proteotoxic pathways induced by α- synuclein leading to neuronal death are not elucidated completely but mitochondrial dysfunction, endoplasmic reticulum (ER) stress and altered ER-golgi transport may play crucial roles in this process. At the molecular level, the ability of α-synuclein to form pores in biomembranes or to interact with specific proteins of the cell organelles and the cytosol could be determining factors in the toxicity of this protein. CONCLUSION Despite many limitations in our present knowledge of physiological and pathological functions of α-synuclein, it appears that this protein may be a target for the development of neuroprotective drugs against PD. This review has discussed many such potential drugs which prevent the expression, accumulation and aggregation of α-synuclein or its interactions with mitochondria or ER and thereby effectively abolish α-synuclein mediated toxicity in different experimental models.
Collapse
Affiliation(s)
| | | | | | | | - Sasanka Chakrabarti
- Address correspondence to this author at the Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India; Tel: +919874489805; E-mail:
| |
Collapse
|
13
|
Wang YW, Zhou Q, Zhang X, Qian QQ, Xu JW, Ni PF, Qian YN. Mild endoplasmic reticulum stress ameliorates lipopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. J Neuroinflammation 2017; 14:233. [PMID: 29179727 PMCID: PMC5704515 DOI: 10.1186/s12974-017-1002-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroinflammation, which ultimately leads to neuronal loss, is considered to play a crucial role in numerous neurodegenerative diseases. The neuroinflammatory process is characterized by the activation of glial cells such as microglia. Endoplasmic reticulum (ER) stress is commonly associated with impairments in neuronal function and cognition, but its relationship and role in neurodegeneration is still controversial. Recently, it was confirmed that nonharmful levels of ER stress protected against experimental Parkinson's disease. Here, we investigated mild ER stress-based regulation of lipopolysaccharide (LPS)-driven neuroinflammation in rats and in primary microglia. METHODS Male Sprague-Dawley (SD) rats received the intracerebroventricular injection of the ER stress activator tunicamycin (TM) with or without intraperitoneal injection of the ER stress stabilizer sodium 4-phenylbutyrate (4-PBA) 1 h before LPS administration. The levels of neuroinflammation and memory dysfunction were assessed 24 h after treatment. In addition, the effect of mild ER stress on microglia was determined in vitro. RESULTS Here, we found that low doses of TM led to mild ER stress without cell or organism lethality. We showed that mild ER stress preconditioning reduced microglia activation and neuronal death as well as improved LPS-induced memory impairment in rats. In addition, pre-exposure to nonlethal doses of TM in microglia showed significant protection against LPS-induced proinflammatory cytokine production and M1/2b polarization. However, sodium 4-PBA, a compound that ameliorates ER stress, ablated this protective effect in vivo and in vitro. CONCLUSIONS Based on our findings, we conclude that the mild ER stress not only limits the accumulation of misfolded proteins but also protects tissues from harmful endotoxemia insults. Therefore, ER stress preconditioning has potential therapeutic value for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiang Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Qing-Qing Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Jia-Wen Xu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Peng-Fei Ni
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
14
|
Hosoi T, Nomura J, Tanaka K, Ozawa K, Nishi A, Nomura Y. Link between endoplasmic reticulum stress and autophagy in neurodegenerative diseases. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2017. [DOI: 10.1515/ersc-2017-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractIncreasing evidence suggests that endoplasmic reticulum (ER) stress and autophagy play an important role in regulating brain function. ER stress activates three major branches of the unfolded protein response (UPR) pathways, namely inositol-requiring enzyme-1 (IRE1), double stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK) and activating transcription factor 6 (ATF6)-mediated pathways. Recent studies have suggested that these UPR signals may be linked to autophagy. In this review article, we summarize recent evidence and discuss a possible link between ER stress and autophagy with regard to neurodegenerative diseases. Furthermore, possible pharmacological strategies targeting UPR and autophagy are discussed.
Collapse
|
15
|
Yan J, Zhang P, Jiao F, Wang Q, He F, Zhang Q, Zhang Z, Lv Z, Peng X, Cai H, Tian B. Quantitative proteomics in A30P*A53T α-synuclein transgenic mice reveals upregulation of Sel1l. PLoS One 2017; 12:e0182092. [PMID: 28771510 PMCID: PMC5542467 DOI: 10.1371/journal.pone.0182092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/12/2017] [Indexed: 01/17/2023] Open
Abstract
α-Synuclein is an abundantly expressed neuronal protein that is at the center of focus in understanding a group of neurodegenerative disorders called synucleinopathies, which are characterized by the intracellular presence of aggregated α-synuclein. However, the mechanism of α-synuclein biology in synucleinopathies pathogenesis is not fully understood. In this study, mice overexpressing human A30P*A53T α-synuclein were evaluated by a motor behavior test and count of TH-positive neurons, and then two-dimensional liquid chromatography-tandem mass spectrometry coupled with tandem mass tags (TMTs) labeling was employed to quantitatively identify the differentially expressed proteins of substantia nigra pars compacta (SNpc) tissue samples that were obtained from the α-synuclein transgenic mice and wild type controls. The number of SNpc dopaminergic neurons and the motor behavior were unchanged in A30P*A53T transgenic mice at the age of 6 months. Of the 4,715 proteins identified by proteomic techniques, 271 were differentially expressed, including 249 upregulated and 22 downregulated proteins. These alterations were primarily associated with mitochondrial dysfunction, oxidative stress, ubiquitin-proteasome system impairment, and endoplasmic reticulum (ER) stress. Some obviously changed proteins, which were validated by western blotting and immunofluorescence staining, including Sel1l and Sdhc, may be involved in the α-synuclein pathologies of synucleinopathies. A biological pathway analysis of common related proteins showed that the proteins were linked to a total of 31 KEGG pathways. Our findings suggest that these identified proteins may serve as novel therapeutic targets for synucleinopathies.
Collapse
Affiliation(s)
- Jianguo Yan
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Fengjuan Jiao
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qingzhi Wang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Feng He
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qian Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Zheng Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Zexi Lv
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xiang Peng
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Hongwei Cai
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- * E-mail:
| |
Collapse
|
16
|
Translating protein phosphatase research into treatments for neurodegenerative diseases. Biochem Soc Trans 2017; 45:101-112. [PMID: 28202663 DOI: 10.1042/bst20160157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Many of the major neurodegenerative disorders are characterized by the accumulation of intracellular protein aggregates in neurons and other cells in brain, suggesting that errors in protein quality control mechanisms associated with the aging process play a critical role in the onset and progression of disease. The increased understanding of the unfolded protein response (UPR) signaling network and, more specifically, the structure and function of eIF2α phosphatases has enabled the development or discovery of small molecule inhibitors that show great promise in restoring protein homeostasis and ameliorating neuronal damage and death. While this review focuses attention on one or more eIF2α phosphatases, the wide range of UPR proteins that are currently being explored as potential drug targets bodes well for the successful future development of therapies to preserve neuronal function and treat neurodegenerative disease.
Collapse
|
17
|
Leinartaité L, Svenningsson P. Folding Underlies Bidirectional Role of GPR37/Pael-R in Parkinson Disease. Trends Pharmacol Sci 2017. [PMID: 28629580 DOI: 10.1016/j.tips.2017.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since conformational flexibility, which is required for the function of a protein, comes at the expense of structural stability, many proteins, including G-protein-coupled receptors (GPCRs), are under constant risk of misfolding and aggregation. In this regard GPR37 (also named PAEL-R and ETBR-LP-1) takes a prominent role, particularly in relation to Parkinson disease (PD). GPR37 is a substrate for parkin and accumulates abnormally in autosomal recessive juvenile parkinsonism, contributing to endoplasmic reticulum stress and death of dopaminergic neurons. GPR37 also constitutes a core structure of Lewy bodies, demonstrating a more general involvement in PD pathology. However, if folded and matured properly, GPR37 seems to be neuroprotective. Moreover, GPR37 modulates functionality of the dopamine transporter and the dopamine D2 receptor and stimulates dopamine neurotransmission. Here we review the multiple roles of GPR37 with relevance to potential disease modification and symptomatic therapies of PD and highlight unsolved issues in this field.
Collapse
Affiliation(s)
- Lina Leinartaité
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Per Svenningsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
18
|
Abstract
Across all kingdoms in the tree of life, calcium (Ca2+) is an essential element used by cells to respond and adapt to constantly changing environments. In multicellular organisms, it plays fundamental roles during fertilization, development and adulthood. The inability of cells to regulate Ca2+ can lead to pathological conditions that ultimately culminate in cell death. One such pathological condition is manifested in Parkinson's disease, the second most common neurological disorder in humans, which is characterized by the aggregation of the protein, α-synuclein. This Review discusses current evidence that implicates Ca2+ in the pathogenesis of Parkinson's disease. Understanding the mechanisms by which Ca2+ signaling contributes to the progression of this disease will be crucial for the development of effective therapies to combat this devastating neurological condition.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaitlyn M McGrath
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gabriela Caraveo
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
19
|
|
20
|
Dahl R. A new target for Parkinson's disease: Small molecule SERCA activator CDN1163 ameliorates dyskinesia in 6-OHDA-lesioned rats. Bioorg Med Chem 2016; 25:53-57. [PMID: 27776889 DOI: 10.1016/j.bmc.2016.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022]
Abstract
Endoplasmic reticulum (ER) stress is intimately linked to Parkinson's disease (PD) pathophysiology. Disrupted intracellular calcium homeostasis is a major cause of the ER stress seen in dopaminergic neurons, leading to the cell death and subsequent loss of movement and coordination in patients. Dysfunctional calcium handling proteins play a major role in the promulgation of ER stress in PD. Specifically, compromised sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) has been identified as a major cause of ER stress and neuron loss in PD. We have identified a small molecule activator of SERCA that increases ER calcium content, rescues neurons from ER stress-induced cell death in vitro, and shows significant efficacy in the rat 6-hydroxydopamine (6-OHDA) model of PD. Together, these results support targeting SERCA activation as a viable strategy to develop disease-modifying therapeutics for PD.
Collapse
Affiliation(s)
- Russell Dahl
- Neurodon LLC, 5700 Tanager St., Schererville, IN 46375, USA.
| |
Collapse
|
21
|
Mollereau B, Rzechorzek NM, Roussel BD, Sedru M, Van den Brink DM, Bailly-Maitre B, Palladino F, Medinas DB, Domingos PM, Hunot S, Chandran S, Birman S, Baron T, Vivien D, Duarte CB, Ryoo HD, Steller H, Urano F, Chevet E, Kroemer G, Ciechanover A, Calabrese EJ, Kaufman RJ, Hetz C. Adaptive preconditioning in neurological diseases - therapeutic insights from proteostatic perturbations. Brain Res 2016; 1648:603-616. [PMID: 26923166 PMCID: PMC5010532 DOI: 10.1016/j.brainres.2016.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 02/06/2023]
Abstract
In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson׳s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses and the molecular pathways they recruit might be exploited for therapeutic gain. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- B Mollereau
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France.
| | - N M Rzechorzek
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, United Kingdom
| | - B D Roussel
- Inserm, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, 14000 Caen, France
| | - M Sedru
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - D M Van den Brink
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - B Bailly-Maitre
- INSERM U1065, C3M, Team 8 (Hepatic Complications in Obesity), Nice, France
| | - F Palladino
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - D B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Santiago, Chile
| | - P M Domingos
- ITQB-UNL, Av. da Republica, EAN, 2780-157 Oeiras, Portugal
| | - S Hunot
- Inserm, U 1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - S Chandran
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - S Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS UMR 8249, ESPCI ParisTech, PSL Research University, 75005 Paris, France
| | - T Baron
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Neurodegenerative Diseases Unit, 31, avenue Tony Garnier, 69364 Lyon Cedex 07, France
| | - D Vivien
- Inserm, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, 14000 Caen, France
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Rua Larga, and Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - H D Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - H Steller
- Howard Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - F Urano
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, MO 63110 USA
| | - E Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - G Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Cell Biology and Metabolomics platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; INSERM, U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women׳s and Children׳s Health, Karolinska University Hospital, Stockholm, Sweden
| | - A Ciechanover
- The Polak Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 30196, Israel
| | - E J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA 01003, USA
| | - R J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - C Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
22
|
Valenzuela V, Martínez G, Duran-Aniotz C, Hetz C. Gene therapy to target ER stress in brain diseases. Brain Res 2016; 1648:561-570. [PMID: 27131987 DOI: 10.1016/j.brainres.2016.04.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Gene therapy based on the use of Adeno-associated viruses (AAVs) is emerging as a safe and stable strategy to target molecular pathways involved in a variety of brain diseases. Endoplasmic reticulum (ER) stress is proposed as a transversal feature of most animal models and clinical samples from patients affected with neurodegenerative diseases. Manipulation of the unfolded protein response (UPR), a major homeostatic reaction under ER stress conditions, had proved beneficial in diverse models of neurodegeneration. Although increasing number of drugs are available to target ER stress, the use of small molecules to treat chronic brain diseases is challenging because of poor blood brain barrier permeability and undesirable side effects due to the role of the UPR in the physiology of peripheral organs. Gene therapy is currently considered a possible future alternative to circumvent these problems by the delivery of therapeutic agents to selective regions and cell types of the nervous system. Here we discuss current efforts to design gene therapy strategies to alleviate ER stress on a disease context. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Vicente Valenzuela
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudia Duran-Aniotz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious diseases, Harvard School of Public Health, 02115 Boston, MA, USA.
| |
Collapse
|
23
|
Lindholm D, Mäkelä J, Di Liberto V, Mudò G, Belluardo N, Eriksson O, Saarma M. Current disease modifying approaches to treat Parkinson's disease. Cell Mol Life Sci 2016; 73:1365-79. [PMID: 26616211 PMCID: PMC11108524 DOI: 10.1007/s00018-015-2101-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland.
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland.
| | - Johanna Mäkelä
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Valentina Di Liberto
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Natale Belluardo
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, P.O.Box 56, Viikinkaari 9, 00014, Helsinki, Finland
| |
Collapse
|
24
|
Abstract
The endoplasmic reticulum (ER) supports many cellular processes and performs diverse functions, including protein synthesis, translocation across the membrane, integration into the membrane, folding, and posttranslational modifications including N-linked glycosylation; and regulation of Ca2+ homeostasis. In mammalian systems, the majority of proteins synthesized by the rough ER have N-linked glycans critical for protein maturation. The N-linked glycan is used as a quality control signal in the secretory protein pathway. A series of chaperones, folding enzymes, glucosidases, and carbohydrate transferases support glycoprotein synthesis and processing. Perturbation of ER-associated functions such as disturbed ER glycoprotein quality control, protein glycosylation and protein folding results in activation of an ER stress coping response. Collectively this ER stress coping response is termed the unfolded protein response (UPR), and occurs through the activation of complex cytoplasmic and nuclear signaling pathways. Cellular and ER homeostasis depends on balanced activity of the ER protein folding, quality control, and degradation pathways; as well as management of the ER stress coping response.
Collapse
|