1
|
Woldeamanuel GG, Frazer AK, Lee A, Avela J, Tallent J, Ahtiainen JP, Pearce AJ, Kidgell DJ. Determining the Corticospinal Responses and Cross-Transfer of Ballistic Motor Performance in Young and Older Adults: A Systematic Review and Meta-Analysis. J Mot Behav 2022; 54:763-786. [PMID: 35437124 DOI: 10.1080/00222895.2022.2061409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ballistic motor training induces plasticity changes and imparts a cross-transfer effect. However, whether there are age-related differences in these changes remain unclear. Thus, the purpose of this study was to perform a meta-analysis to determine the corticospinal responses and cross-transfer of motor performance following ballistic motor training in young and older adults. Meta-analysis was performed using a random-effects model. A best evidence synthesis was performed for variables that had insufficient data for meta-analysis. There was strong evidence to suggest that young participants exhibited greater cross-transfer of ballistic motor performance than their older counterparts. This meta-analysis showed no significant age-related differences in motor-evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and surface electromyography (sEMG) for both hands following ballistic motor training.
Collapse
Affiliation(s)
- Gashaw Garedew Woldeamanuel
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Annemarie Lee
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Janne Avela
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Finland
| | - Jamie Tallent
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia.,Faculty of Sport, Health and Applied Sciences, St Mary's University, Twickenham, UK
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Finland
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Dawson J Kidgell
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Chen Y, Wang P, Bai Y, Wang Y. Effects of mirror training on motor performance in healthy individuals: a systematic review and meta-analysis. BMJ Open Sport Exerc Med 2019; 5:e000590. [PMID: 31908833 PMCID: PMC6937065 DOI: 10.1136/bmjsem-2019-000590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 11/30/2022] Open
Abstract
Objective Mirror training (MTr) is a rehabilitation technique for patients with neurological diseases. There is no consensus on its effects on motor function in healthy individuals. This systematic review and meta-analysis considers the effects of MTr on motor function in healthy individuals. Design This is a systematic review and meta-analysis. Data sources We searched six databases for studies assessing the effects of MTr on motor function in healthy individuals, published between January 1995 and December 2018. The Cochrane risk of bias was used to assess the quality of the studies. A meta-analysis was conducted with narrative synthesis. Eligibility criteria for selecting studies English-language randomised controlled trials reporting the behavioural results in healthy individuals were included. Results Fourteen randomised controlled trials involving 538 healthy individuals were eligible. Two short-term studies showed MTr was inferior to passive vision pattern (standardised mean difference 0.57 (95% CI 0.06 to 1.08), I2=0%, p=0.03). The methods varied and there is limited evidence supporting the effectiveness of MTr compared with three alternative training patterns, with insufficient evidence to support analyses of age, skill level or hand dominance. Conclusion The limited evidence that MTr affects motor performance in healthy individuals is weak and inconsistent among studies. It is unclear whether the effects of MTr on motor performance are more pronounced than the direct vision pattern, passive vision pattern or action observation. Further studies are needed to explore the short-term and long-term benefits of MTr and its effects on motor learning in healthy individuals. PROSPERO registration number CRD42019128881.
Collapse
Affiliation(s)
- Yinglun Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Pu Wang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
van de Ruit M, Grey MJ. The TMS Motor Map Does Not Change Following a Single Session of Mirror Training Either with Or without Motor Imagery. Front Hum Neurosci 2017; 11:601. [PMID: 29311869 PMCID: PMC5732933 DOI: 10.3389/fnhum.2017.00601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022] Open
Abstract
Both motor imagery and mirror training have been used in motor rehabilitation settings to promote skill learning and plasticity. As motor imagery and mirror training are suggested to be closely linked, it was hypothesized that mirror training augmented by motor imagery would increase corticospinal excitability (CSE) significantly compared to mirror training alone. Forty-four participants were split over two experimental groups. Each participant visited the laboratory once to receive either mirror training alone or mirror training augmented with layered stimulus response training (LSRT), a type of motor imagery training. Participants performed 16 min of mirror training, making repetitive grasping movements paced by a metronome. Transcranial magnetic stimulation (TMS) mapping was performed before and after the mirror training to test for changes in CSE of the untrained hand. Self-reports suggested that the imagery training was effective in helping the participant to perform the mirror training task as instructed. Nonetheless, neither training type resulted in a significant change of TMS map area, nor was there an interaction between the groups. The results from the study revealed no effect of a single session of 16 min of either mirror training or mirror training enhanced by imagery on TMS map area. Despite the negative result of the present experiment, this does not suggest that either motor imagery or mirror training might be ineffective as a rehabilitation therapy. Further study is required to allow disentangling the role of imagery and action observation in mirror training so that mirror training can be further tailored to the individual according to their abilities.
Collapse
Affiliation(s)
- Mark van de Ruit
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Michael J Grey
- Acquired Brain Injury Rehabilitation Alliance, School of Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
5
|
Yarossi M, Manuweera T, Adamovich SV, Tunik E. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability. Front Hum Neurosci 2017; 11:242. [PMID: 28553218 PMCID: PMC5425477 DOI: 10.3389/fnhum.2017.00242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability.
Collapse
Affiliation(s)
- Mathew Yarossi
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health SciencesNewark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, USA.,Department of Rehabilitation and Movement Sciences, Rutgers Biomedical Health SciencesNewark, NJ, USA
| | - Thushini Manuweera
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health SciencesNewark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, USA.,Department of Rehabilitation and Movement Sciences, Rutgers Biomedical Health SciencesNewark, NJ, USA
| | - Sergei V Adamovich
- Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, USA.,Department of Rehabilitation and Movement Sciences, Rutgers Biomedical Health SciencesNewark, NJ, USA
| | - Eugene Tunik
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern UniversityBoston, MA, USA.,Department of Bioengineering, Northeastern UniversityBoston, MA, USA.,Department of Biology, Northeastern UniversityBoston, MA, USA.,Department of Electrical and Computer Engineering, Northeastern UniversityBoston, MA, USA
| |
Collapse
|
6
|
Hendy AM, Lamon S. The Cross-Education Phenomenon: Brain and Beyond. Front Physiol 2017; 8:297. [PMID: 28539892 PMCID: PMC5423908 DOI: 10.3389/fphys.2017.00297] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
Objectives: Unilateral resistance training produces strength gains in the untrained homologous muscle group, an effect termed “cross-education.” The observed strength transfer has traditionally been considered a phenomenon of the nervous system, with few studies examining the contribution of factors beyond the brain and spinal cord. In this hypothesis and theory article, we aim to discuss further evidence for structural and functional adaptations occurring within the nervous, muscle, and endocrine systems in response to unilateral resistance training. The limitations of existing cross-education studies will be explored, and novel potential stakeholders that may contribute to the cross-education effect will be identified. Design: Critical review of the literature. Method: Search of online databases. Results: Studies have provided evidence that functional reorganization of the motor cortex facilitates, at least in part, the effects of cross-education. Cross-activation of the “untrained” motor cortex, ipsilateral to the trained limb, plays an important role. While many studies report little or no gains in muscle mass in the untrained limb, most experimental designs have not allowed for sensitive or comprehensive investigation of structural changes in the muscle. Conclusions: Increased neural drive originating from the “untrained” motor cortex contributes to the cross-education effect. Adaptive changes within the muscle fiber, as well as systemic and hormonal factors require further investigation. An increased understanding of the physiological mechanisms contributing to cross-education will enable to more effectively explore its effects and potential applications in rehabilitation of unilateral movement disorders or injury.
Collapse
Affiliation(s)
- Ashlee M Hendy
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin UniversityGeelong, VIC, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin UniversityGeelong, VIC, Australia
| |
Collapse
|
7
|
Ruddy KL, Rudolf AK, Kalkman B, King M, Daffertshofer A, Carroll TJ, Carson RG. Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task. Front Hum Neurosci 2016; 10:204. [PMID: 27199722 PMCID: PMC4853797 DOI: 10.3389/fnhum.2016.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability (CSE) arising from prior training of the opposite limb determine levels of interlimb transfer. We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: (1) mirrored visual feedback of the training limb; (2) no visual feedback of either limb; and (3) visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training. There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb. The results suggest that the acute adaptations that mediate the bilateral performance gains realized through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS.
Collapse
Affiliation(s)
- Kathy L Ruddy
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College DublinDublin, Ireland; School of Psychology, Queen's University BelfastNorthern Ireland, UK; Neural Control of Movement Lab, ETH ZurichZurich, Switzerland
| | - Anne K Rudolf
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College DublinDublin, Ireland; Department of Neurocognitive Psychology, Goethe UniversityFrankfurt, Germany
| | - Barbara Kalkman
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College DublinDublin, Ireland; Faculty of Human Movement Sciences, Vrije University AmsterdamAmsterdam, Netherlands
| | - Maedbh King
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland
| | - Andreas Daffertshofer
- Faculty of Human Movement Sciences, Vrije University Amsterdam Amsterdam, Netherlands
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human Movement Studies, University of Queensland Brisbane, QLD, Australia
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College DublinDublin, Ireland; School of Psychology, Queen's University BelfastNorthern Ireland, UK
| |
Collapse
|
8
|
Carson RG, Ruddy KL, McNickle E. What Do TMS-Evoked Motor Potentials Tell Us About Motor Learning? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 957:143-157. [DOI: 10.1007/978-3-319-47313-0_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|