1
|
Pupíková M, Maceira-Elvira P, Harquel S, Šimko P, Popa T, Gajdoš M, Lamoš M, Nencha U, Mitterová K, Šimo A, Hummel FC, Rektorová I. Physiology-inspired bifocal fronto-parietal tACS for working memory enhancement. Heliyon 2024; 10:e37427. [PMID: 39315230 PMCID: PMC11417162 DOI: 10.1016/j.heliyon.2024.e37427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Aging populations face significant cognitive challenges, particularly in working memory (WM). Transcranial alternating current stimulation (tACS) offer promising avenues for cognitive enhancement, especially when inspired by brain physiology. This study (NCT04986787) explores the effect of multifocal tACS on WM performance in healthy older adults, focusing on fronto-parietal network modulation. Individualized physiology-inspired tACS applied to the fronto-parietal network was investigated in two blinded cross-over experiments. The first experiment involved monofocal/bifocal theta-tACS to the fronto-parietal network, while in the second experiment cross-frequency theta-gamma interactions between these regions were explored. Participants have done online WM tasks under the stimulation conditions. Network connectivity was assessed via rs-fMRI and multichannel electroencephalography. Prefrontal monofocal theta tACS modestly improved WM accuracy over sham (d = 0.30). Fronto-parietal stimulation enhanced WM task processing speed, with the strongest effects for bifocal in-phase theta tACS (d = 0.41). Cross-frequency stimulations modestly boosted processing speed with or without impairing task accuracy depending on the stimulation protocol. This research adds to the understanding of physiology-inspired brain stimulation for cognitive enhancement in older subjects.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pablo Maceira-Elvira
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation Sion, Switzerland
| | - Sylvain Harquel
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
| | - Patrik Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Traian Popa
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation Sion, Switzerland
| | - Martin Gajdoš
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Umberto Nencha
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Kristína Mitterová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Adam Šimo
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Friedhelm C. Hummel
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Zhang W, Zhao C, Tang F, Luo W. Automatic Positive and Negative Emotion Regulation in Adolescents with Major Depressive Disorder. Psychopathology 2023; 57:111-122. [PMID: 37647878 DOI: 10.1159/000533334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Adolescents with major depressive disorder (MDD) exhibit hypoactivity to positive stimuli and hyperactivity to negative stimuli in terms of neural responses. Automatic emotion regulation (AER) activates triple networks (i.e., the central control network, default mode network, and salience network). Based on previous studies, we hypothesized that adolescents with MDD exhibit dissociable spatiotemporal deficits during positive and negative AER. METHODS We first collected EEG data from 32 adolescents with MDD and 35 healthy adolescents while they performed an implicit emotional Go/NoGo task. Then, we characterized the spatiotemporal dynamics of cortical activity during AER. RESULTS In Go trials, MDD adolescents exhibited reduced N2 amplitudes, enhanced theta power for positive pictures, and stronger bottom-up information flow from the left orbitofrontal cortex (OFC) to the right superior frontal gyrus compared to top-down information flow than the controls. In contrast, in NoGo trials, MDD adolescents exhibited elevated P3 amplitudes, enhanced theta power, and stronger top-down information flows from the right middle frontal gyrus to the right OFC and the left insula than the controls. CONCLUSION Overall, adolescents with MDD exhibited impaired automatic attention to positive emotions and impaired automatic response inhibition. These findings have potential implications for the clinical treatment of adolescents with MDD.
Collapse
Affiliation(s)
- Wenhai Zhang
- Mental Health Center, Yancheng Institute of Technology, Yancheng, China
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang, China
| | - Cancan Zhao
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- School of Psychology, Shandong Normal University, Jinan, China
| | - Fanggui Tang
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| |
Collapse
|
3
|
Jauny G, Eustache F, Hinault TT. M/EEG Dynamics Underlying Reserve, Resilience, and Maintenance in Aging: A Review. Front Psychol 2022; 13:861973. [PMID: 35693495 PMCID: PMC9174693 DOI: 10.3389/fpsyg.2022.861973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022] Open
Abstract
Cognitive reserve and resilience refer to the set of processes allowing the preservation of cognitive performance in the presence of structural and functional brain changes. Investigations of these concepts have provided unique insights into the heterogeneity of cognitive and brain changes associated with aging. Previous work mainly relied on methods benefiting from a high spatial precision but a low temporal resolution, and thus the temporal brain dynamics underlying these concepts remains poorly known. Moreover, while spontaneous fluctuations of neural activity have long been considered as noise, recent work highlights its critical contribution to brain functions. In this study, we synthesized the current state of knowledge from magnetoencephalography (MEG) and electroencephalography (EEG) studies that investigated the contribution of maintenance of neural synchrony, and variability of brain dynamics, to cognitive changes associated with healthy aging and the progression of neurodegenerative disease (such as Alzheimer's disease). The reviewed findings highlight that compensations could be associated with increased synchrony of higher (>10 Hz) frequency bands. Maintenance of young-like synchrony patterns was also observed in healthy older individuals. Both maintenance and compensation appear to be highly related to preserved structural integrity (brain reserve). However, increased synchrony was also found to be deleterious in some cases and reflects neurodegenerative processes. These results provide major elements on the stability or variability of functional networks as well as maintenance of neural synchrony over time, and their association with individual cognitive changes with aging. These findings could provide new and interesting considerations about cognitive reserve, maintenance, and resilience of brain functions and cognition.
Collapse
Affiliation(s)
| | | | - Thomas Thierry Hinault
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Centre Cyceron, Caen, France
| |
Collapse
|
4
|
ElShafei HA, Masson R, Fakche C, Fornoni L, Moulin A, Caclin A, Bidet-Caulet A. Age-related differences in bottom-up and top-down attention: Insights from EEG and MEG. Eur J Neurosci 2022; 55:1215-1231. [PMID: 35112420 PMCID: PMC9303169 DOI: 10.1111/ejn.15617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022]
Abstract
Attention operates through top‐down and bottom‐up processes, and a balance between these processes is crucial for daily tasks. Imperilling such balance could explain ageing‐associated attentional problems such as exacerbated distractibility. In this study, we aimed to characterize this enhanced distractibility by investigating the impact of ageing upon event‐related components associated with top‐down and bottom‐up attentional processes. MEG and EEG data were acquired from 14 older and 14 younger healthy adults while performing a task that conjointly evaluates top‐down and bottom‐up attention. Event‐related components were analysed on sensor and source levels. In comparison with the younger group, the older mainly displayed (1) reduced target anticipation processes (reduced CMV), (2) increased early target processing (larger P50 but smaller N1) and (3) increased processing of early distracting sounds (larger N1 but reduced P3a), followed by a (4) prolonged reorientation towards the main task (larger RON). Taken together, our results suggest that the enhanced distractibility in ageing could stem from top‐down deficits, in particular from reduced inhibitory and reorientation processes.
Collapse
Affiliation(s)
- Hesham A ElShafei
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France.,Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands.,Donders Centre for Cognitive Neuroimaging, EN, Nijmegen, Netherlands
| | - Rémy Masson
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Camille Fakche
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Lesly Fornoni
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Annie Moulin
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Aurélie Bidet-Caulet
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
5
|
Courtney SM, Hinault T. When the time is right: Temporal dynamics of brain activity in healthy aging and dementia. Prog Neurobiol 2021; 203:102076. [PMID: 34015374 DOI: 10.1016/j.pneurobio.2021.102076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Brain activity and communications are complex phenomena that dynamically unfold over time. However, in contrast with the large number of studies reporting neuroanatomical differences in activation relative to young adults, changes of temporal dynamics of neural activity during normal and pathological aging have been grossly understudied and are still poorly known. Here, we synthesize the current state of knowledge from MEG and EEG studies that aimed at specifying the effects of healthy and pathological aging on local and network dynamics, and discuss the clinical and theoretical implications of these findings. We argue that considering the temporal dynamics of brain activations and networks could provide a better understanding of changes associated with healthy aging, and the progression of neurodegenerative disease. Recent research has also begun to shed light on the association of these dynamics with other imaging modalities and with individual differences in cognitive performance. These insights hold great potential for driving new theoretical frameworks and development of biomarkers to aid in identifying and treating age-related cognitive changes.
Collapse
Affiliation(s)
- S M Courtney
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; F.M. Kirby Research Center, Kennedy Krieger Institute, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, MD 21205, USA
| | - T Hinault
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; U1077 INSERM-EPHE-UNICAEN, Caen, France.
| |
Collapse
|
6
|
Lockwood CT, Duffy CJ. Hyperexcitability in Aging Is Lost in Alzheimer's: What Is All the Excitement About? Cereb Cortex 2020; 30:5874-5884. [PMID: 32548625 DOI: 10.1093/cercor/bhaa163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neuronal hyperexcitability has emerged as a potential biomarker of late-onset early-stage Alzheimer's disease (LEAD). We hypothesize that the aging-related posterior cortical hyperexcitability anticipates the loss of excitability with the emergence of impairment in LEAD. To test this hypothesis, we compared the behavioral and neurophysiological responses of young and older (ON) normal adults, and LEAD patients during a visuospatial attentional control task. ONs show frontal cortical signal incoherence and posterior cortical hyper-responsiveness with preserved attentional control. LEADs lose the posterior hyper-responsiveness and fail in the attentional task. Our findings suggest that signal incoherence and cortical hyper-responsiveness in aging may contribute to the development of functional impairment in LEAD.
Collapse
Affiliation(s)
- Colin T Lockwood
- Departments of Neurology and Brain and Cognitive Sciences, University of Rochester Medical Center, Rochester 14642, NY, USA
| | - Charles J Duffy
- Departments of Neurology and Brain and Cognitive Sciences, University of Rochester Medical Center, Rochester 14642, NY, USA
| |
Collapse
|
7
|
Huizeling E, Wang H, Holland C, Kessler K. Age-Related Changes in Attentional Refocusing during Simulated Driving. Brain Sci 2020; 10:brainsci10080530. [PMID: 32784739 PMCID: PMC7465308 DOI: 10.3390/brainsci10080530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
We recently reported that refocusing attention between temporal and spatial tasks becomes more difficult with increasing age, which could impair daily activities such as driving (Callaghan et al., 2017). Here, we investigated the extent to which difficulties in refocusing attention extend to naturalistic settings such as simulated driving. A total of 118 participants in five age groups (18–30; 40–49; 50–59; 60–69; 70–91 years) were compared during continuous simulated driving, where they repeatedly switched from braking due to traffic ahead (a spatially focal yet temporally complex task) to reading a motorway road sign (a spatially more distributed task). Sequential-Task (switching) performance was compared to Single-Task performance (road sign only) to calculate age-related switch-costs. Electroencephalography was recorded in 34 participants (17 in the 18–30 and 17 in the 60+ years groups) to explore age-related changes in the neural oscillatory signatures of refocusing attention while driving. We indeed observed age-related impairments in attentional refocusing, evidenced by increased switch-costs in response times and by deficient modulation of theta and alpha frequencies. Our findings highlight virtual reality (VR) and Neuro-VR as important methodologies for future psychological and gerontological research.
Collapse
Affiliation(s)
- Eleanor Huizeling
- Aston Neuroscience Institute, Aston University, Birmingham B4 7ET, UK;
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham B4 7ET, UK;
- Correspondence: (E.H.); (K.K.)
| | - Hongfang Wang
- Aston Neuroscience Institute, Aston University, Birmingham B4 7ET, UK;
| | - Carol Holland
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham B4 7ET, UK;
| | - Klaus Kessler
- Aston Neuroscience Institute, Aston University, Birmingham B4 7ET, UK;
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham B4 7ET, UK;
- Correspondence: (E.H.); (K.K.)
| |
Collapse
|
8
|
Abstract
Previous research has reported reduced efficiency in reactive inhibition, along with reduced brain activations, in older adults. The current study investigated age-related behavioral and neural changes in proactive inhibition, and whether age may influence the relationship between proactive and reactive inhibition. One-hundred-and-forty-nine adults (18 to 72 years) underwent fMRI while performing a stop signal task (SST). Proactive inhibition was defined by the sequential effect, the correlation between the estimated probability of stop signal - p(Stop) - and go trial reaction time (goRT). P(Stop) was estimated trial by trial with a Bayesian belief model; reactive inhibition was defined by the stop signal reaction time (SSRT). Behaviorally the magnitude of sequential effect was not correlated with age, replicating earlier reports of spared proactive control in older adults. Age was associated with greater activations to p(Stop) in the lateral prefrontal cortex (PFC), paracentral lobule, superior parietal lobule, and cerebellum, and activations to goRT in the inferior occipital gyrus (IOG). Granger Causality analysis demonstrated that the PFC Granger caused IOG, with the PFC-IOG connectivity significantly correlated with p(Stop) in older but not younger adults. These findings suggest that the PFC and IOG activations and PFC-IOG connectivity may compensate for proactive control during aging. In contrast, while the activations of the ventromedial prefrontal cortex and caudate head to p(Stop) were negatively correlated with SSRT, relating proactive to reactive control, these activities did not vary with age. These findings highlighted distinct neural processes underlying proactive inhibition and limited neural plasticity to support cognitive control in the aging brain.
Collapse
|
9
|
ElShafei HA, Fornoni L, Masson R, Bertrand O, Bidet-Caulet A. Age-related modulations of alpha and gamma brain activities underlying anticipation and distraction. PLoS One 2020; 15:e0229334. [PMID: 32163441 PMCID: PMC7067396 DOI: 10.1371/journal.pone.0229334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 02/04/2020] [Indexed: 01/10/2023] Open
Abstract
Attention operates through top-down (TD) and bottom-up (BU) mechanisms. Recently, it has been shown that slow (alpha) frequencies index facilitatory and suppressive mechanisms of TD attention and faster (gamma) frequencies signal BU attentional capture. Ageing is characterized by increased behavioral distractibility, resulting from either a reduced efficiency of TD attention or an enhanced triggering of BU attention. However, only few studies have investigated the impact of ageing upon the oscillatory activities involved in TD and BU attention. MEG data were collected from 14 elderly and 14 matched young healthy human participants while performing the Competitive Attention Task. Elderly participants displayed (1) exacerbated behavioral distractibility, (2) altered TD suppressive mechanisms, indexed by a reduced alpha synchronization in task-irrelevant regions, (3) less prominent alpha peak-frequency differences between cortical regions, (4) a similar BU system activation indexed by gamma activity, and (5) a reduced activation of lateral prefrontal inhibitory control regions. These results show that the ageing-related increased distractibility is of TD origin.
Collapse
Affiliation(s)
- Hesham A. ElShafei
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| | - Lesly Fornoni
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Rémy Masson
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Olivier Bertrand
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Aurélie Bidet-Caulet
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
10
|
Sciberras-Lim ET, Lambert AJ. Attentional Orienting and Dorsal Visual Stream Decline: Review of Behavioral and EEG Studies. Front Aging Neurosci 2017; 9:246. [PMID: 28798685 PMCID: PMC5529339 DOI: 10.3389/fnagi.2017.00246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 01/04/2023] Open
Abstract
Every day we are faced with an overwhelming influx of visual information. Visual attention acts as the filtering mechanism that enables us to focus our limited neural resources, by selectively processing only the most relevant and/or salient aspects of our visual environment. The ability to shift attention to the most behaviorally relevant items enables us to successfully navigate and interact with our surroundings. The dorsal visual stream is important for the rapid and efficient visuospatial orienting of attention. Unfortunately, recent evidence suggests that the dorsal visual stream may be especially vulnerable to age-related decline, with significant deterioration becoming evident quite early in the aging process. Yet, despite the significant age-related declines to the dorsal visual stream, the visuospatial orienting of attention appears relatively well preserved in older adults, at least in the early stages of aging. The maintenance of visuospatial orienting of attention in older adults appears to be facilitated by the engagement of compensatory neural mechanisms. In particular, older adults demonstrate heightened activity in the frontal regions to compensate for the reduced activity in the posterior sensory regions. These findings suggest that older adults are more reliant on control processes mediated by the anterior regions of the frontoparietal attention network to compensate for less efficient sensory processing within the posterior sensory cortices.
Collapse
Affiliation(s)
| | - Anthony J Lambert
- Department of Psychology, University of AucklandAuckland, New Zealand
| |
Collapse
|
11
|
Wei R, Li C, Fogelson N, Li L. Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using MRI and Structural Network Features. Front Aging Neurosci 2016; 8:76. [PMID: 27148045 PMCID: PMC4836149 DOI: 10.3389/fnagi.2016.00076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/29/2016] [Indexed: 12/30/2022] Open
Abstract
Optimized magnetic resonance imaging (MRI) features and abnormalities of brain network architectures may allow earlier detection and accurate prediction of the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD). In this study, we proposed a classification framework to distinguish MCI converters (MCIc) from MCI non-converters (MCInc) by using a combination of FreeSurfer-derived MRI features and nodal features derived from the thickness network. At the feature selection step, we first employed sparse linear regression with stability selection, for the selection of discriminative features in the iterative combinations of MRI and network measures. Subsequently the top K features of available combinations were selected as optimal features for classification. To obtain unbiased results, support vector machine (SVM) classifiers with nested cross validation were used for classification. The combination of 10 features including those from MRI and network measures attained accuracies of 66.04, 76.39, 74.66, and 73.91% for mixed conversion time, 6, 12, and 18 months before diagnosis of probable AD, respectively. Analysis of the diagnostic power of different time periods before diagnosis of probable AD showed that short-term prediction (6 and 12 months) achieved more stable and higher AUC scores compared with long-term prediction (18 months), with K-values from 1 to 30. The present results suggest that meaningful predictors composed of MRI and network measures may offer the possibility for early detection of progression from MCI to AD.
Collapse
Affiliation(s)
- Rizhen Wei
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Chuhan Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China; School of Computer Science and Engineering, University of Electronic Science and Technology of ChinaChengdu, China
| | - Noa Fogelson
- EEG and Cognition Laboratory, University of A Coruña A Coruña, Spain
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| |
Collapse
|