1
|
Liu T, Shi J, Wu D, Li D, Wang Y, Liu J, Meng P, Hu L, Fu C, Mei Z, Ge J, Zhang X. THSG alleviates cerebral ischemia/reperfusion injury via the GluN2B-CaMKII-ERK1/2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155595. [PMID: 38677275 DOI: 10.1016/j.phymed.2024.155595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The potential therapeutic targeting of PINK1-PARK2-mediated mitophagy against cerebral ischemia/reperfusion (CI/R) injury involves the pathophysiological processes of neurovascular unit (NVU) and is closely associated with N-methyl-D-aspartate receptors (NMDARs) commonly expressed in NVU. 2,3,5,4'-Tetrahydroxy-stilbene-2-O-β-D-glucoside (THSG), a compound derived from the traditional Chinese medicine Polygonum multiflorum Thunb., has demonstrated notable neuroprotective properties against CI/R injury. However, it remains unclear whether THSG exerts its protective effects through GluN2B related PINK1/ PARK2 pathway. PURPOSE This study aims to explore the pharmacological effects of THSG on alleviating CI/R injury via the GluN2B-CaMKII-ERK1/2 pathway. METHODS THSG neuroprotection against CI/R injury was studied in transient middle cerebral artery occlusion/reversion (tMCAO/R) model rats and in oxygen and glucose deprivation/ reoxygenation (OGD/R) induced neurons. PINK1-PARK2-mediated mitophagy involvement in the protective effect of THSG was investigated in tMCAO/R rats and OGD/R-induced neurons via THSG and 3-methyladenine (3-MA) treatment. Furthermore, the beneficial role of GluN2B in reperfusion and its contribution to the THSG effect via CaMKII-ERK1/2 and PINK1-PARK2-mediated mitophagy was explored using the GluN2B-selective antagonist Ro 25-6981 both in vivo and in vitro. Finally, the interaction between THSG and GluN2B was evaluated using molecular docking. RESULTS THSG significantly reduced infarct volume, neurological deficits, penumbral neuron structure, and functional damage, upregulated the inhibitory apoptotic marker Bcl-2, and suppressed the increase of pro-apoptotic proteins including cleaved caspase-3 and Bax in tMCAO/R rats. THSG (1 μM) markedly improved the neuronal survival under OGD/R conditions. Furthermore, THSG promoted PINK1 and PARK2 expression and increased mitophagosome numbers and LC3-II-LC3-I ratio both in vivo and in vitro. The effects of THSG were considerably abrogated by the mitophagy inhibitor 3-MA in OGD/R-induced neurons. Inhibiting GluN2B profoundly decreased mitophagosome numbers and OGD/R-induced neuronal viability. Specifically, inhibiting GluN2B abolished the protection of THSG against CI/R injury and reversed the upregulation of PINK1-PARK2-mediated mitophagy by THSG. Inhibiting GluN2B eliminated THSG upregulation of ERK1/2 and CaMKII phosphorylation. The molecular docking analysis results demonstrated that THSG bound to GluN2B (binding energy: -5.2 ± 0.11 kcal/mol). CONCLUSIONS This study validates the premise that THSG alleviates CI/R injury by promoting GluN2B expression, activating CaMKII and ERK1/2, and subsequently enhancing PINK1-PARK2-mediated mitophagy. This work enlightens the potential of THSG as a promising candidate for novel therapeutic strategies for treating ischemic stroke.
Collapse
Affiliation(s)
- Tonghe Liu
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China; Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jiayi Shi
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China
| | - Dahua Wu
- Department of Neurology, Hunan University of Chinese Medicine Integrated Chinese Medicine Affiliated Hospital, Changsha 410208, China
| | - Dandan Li
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Pan Meng
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Lijuan Hu
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chaojun Fu
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhigang Mei
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China.
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China.
| | - Xiuli Zhang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, 300 Bachelor Road, Changsha 410208, China.
| |
Collapse
|
2
|
ZHOU ZA, WANG SR, ZHANG J, GUO RH, GUO B. Progress on acupuncture in relieving stroke induced limb spasticity by regulating neuroplasticity-related signals 针刺通过调节脑可塑性相关信号缓解脑卒中肢体痉挛状态研究进展. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2023. [DOI: 10.1016/j.wjam.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
3
|
ERK/mTOR signaling may underlying the antidepressant actions of rapastinel in mice. Transl Psychiatry 2022; 12:522. [PMID: 36550125 PMCID: PMC9780240 DOI: 10.1038/s41398-022-02290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Rapastinel as the allosteric modulator of N-methyl-D-aspartate receptor (NMDAR) produces rapid antidepressant-like effects dependent on brain-derived neurotrophic factor (BDNF) and VGF (nonacryonimic) release. Herein, we further explore the molecular mechanisms of the antidepressant effects of repeated administration with rapastinel in mice. Our results showed that continuous 3-day rapastinel (5 and 10 mg/kg, i.v.) produced antidepressant-like actions dependent on the increase in extracellular regulated protein kinase (ERK)/mammalian target of rapamycin (mTOR) signaling and downstream substrates p70S6 kinase (p70S6k) and the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), which may induce the expression of VGF and BDNF in the hippocampus and prefrontal cortex of mice. Furthermore, compared with a single treatment, our data indicated that 3-day repeated rapastinel treatment produced antidepressant-like actions accompanied by potentiation of ERK/mTOR/VGF/BDNF/tropomyosin-related kinase receptor B (TrkB) signaling. Based on previous and our supplementary data that showed the pivotal role of on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in the rapid release of VGF and BDNF and activation of TrkB by a single dose of rapastinel, we postulate that the antidepressant-like effects of single or repeated administration of rapastinel may result in the rapid release of VGF and BDNF or ERK/mTOR signaling pathway-mediated VGF/BDNF/TrkB autoregulatory feedback loop respectively. Our current work adds new knowledge to the molecular mechanisms that underlie the antidepressant-like actions of rapastinel in mice.
Collapse
|
4
|
Wang YT, Zhang NN, Liu LJ, Jiang H, Hu D, Wang ZZ, Chen NH, Zhang Y. Glutamatergic receptor and neuroplasticity in depression: Implications for ketamine and rapastinel as the rapid-acting antidepressants. Biochem Biophys Res Commun 2022; 594:46-56. [DOI: 10.1016/j.bbrc.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
|
5
|
Cappelli J, Khacho P, Wang B, Sokolovski A, Bakkar W, Raymond S, Ahlskog N, Pitney J, Wu J, Chudalayandi P, Wong AYC, Bergeron R. Glycine-induced NMDA receptor internalization provides neuroprotection and preserves vasculature following ischemic stroke. iScience 2022; 25:103539. [PMID: 34977503 PMCID: PMC8689229 DOI: 10.1016/j.isci.2021.103539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide. Following an ischemic event, neuronal death is triggered by uncontrolled glutamate release leading to overactivation of glutamate sensitive N-methyl-d-aspartate receptor (NMDAR). For gating, NMDARs require not only the binding of glutamate, but also of glycine or a glycine-like compound as a co-agonist. Low glycine doses enhance NMDAR function, whereas high doses trigger glycine-induced NMDAR internalization (GINI) in vitro. Here, we report that following an ischemic event, in vivo, GINI also occurs and provides neuroprotection in the presence of a GlyT1 antagonist (GlyT1-A). Mice pretreated with a GlyT1-A, which increases synaptic glycine levels, exhibited smaller stroke volume, reduced cell death, and minimized behavioral deficits following stroke induction by either photothrombosis or endothelin-1. Moreover, we show evidence that in ischemic conditions, GlyT1-As preserve the vasculature in the peri-infarct area. Therefore, GlyT1 could be a new target for the treatment of ischemic stroke. GINI is a dynamic phenomenon which dampens NMDAR-mediated excitotoxicity during stroke GlyT1-antagonists (GlyT1-As) trigger GINI during stroke in vivo GlyT1-As mitigate post-stroke behavioral deficits and preserve peri-infarct vasculature GlyT1 could be a novel and viable therapeutic target for ischemic stroke
Collapse
Affiliation(s)
- Julia Cappelli
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Pamela Khacho
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Boyang Wang
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Alexandra Sokolovski
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Wafae Bakkar
- Ottawa Hospital Research Institute, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Sophie Raymond
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Nina Ahlskog
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Julian Pitney
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Junzheng Wu
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Prakash Chudalayandi
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Adrian Y C Wong
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Richard Bergeron
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Liu Y, Ding S, Luan Y, Zhu Z, Cai Y, Liu Y. Ginkgo biloba extracts inhibit post-ischemic LTP through attenuating EPSCs in rat hippocampus. Metab Brain Dis 2021; 36:2299-2311. [PMID: 34463942 DOI: 10.1007/s11011-021-00830-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
Ginkgo biloba extract 761 (EGb761), a standardized extract from the Ginkgo biloba leaf, is purported to inhibit NMDA receptor-mediated neuronal excitotoxicity and protect neurons form ischemic injury. However, the specific signal pathway involved in the effects of EGb761 on synaptic plasticity is still in dispute. In this article, effects of EGb761 and its monomer component ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and quercetin on rat hippocampal synaptic plasticity were studied. The evoked Excitatory postsynaptic currents (EPSCs) and miniature EPSCs were recorded on hippocampal slices from SD rats (14-21 days of age) by whole-cell patch-clamp recording and long-term potentiation (LTP) was induced by theta-burst stimulation. Acutely applied EGb761 inhibited the LTP, but bilaterally affect the evoked EPSCs. The evoked EPSCs were increased by incubation of lower concentration of EGb761, then the evoked EPSCs were decreased by incubation of higher concentration of EGb761. EGb761 monomer component GA, GB and GC could also inhibit the TBS-induced LTP and EPSC amplitude but not paired-pulse ratio (PPR). But quercetin, another monomer component of EGb761, led to increase in EPSC amplitude and decrease in PPR. Simultaneously, EGb761 and its monomer component ginkgolides inhibited the post-ischemic LTP (i-LTP) by inhibiting the EPSCs and the AMPA receptor subunit GluA1 expression on postsynaptic membrane. The results indicated that high concentration of EGb761 might inhibit LTP and i-LTP through inhibition effects of GA, GB and GC on AMPA receptors.
Collapse
Affiliation(s)
- Yong Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China.
| | - Supeng Ding
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yifei Luan
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China
| | - Zhichao Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yuting Cai
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yingkui Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China
| |
Collapse
|
7
|
Wang W, Liu X, Yang Z, Shen H, Liu L, Yu Y, Zhang T. Levodopa Improves Cognitive Function and the Deficits of Structural Synaptic Plasticity in Hippocampus Induced by Global Cerebral Ischemia/Reperfusion Injury in Rats. Front Neurosci 2020; 14:586321. [PMID: 33328857 PMCID: PMC7734175 DOI: 10.3389/fnins.2020.586321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
The cognitive impairment caused by cerebral ischemia/reperfusion is an unsolved problem in the field of international neural rehabilitation. Not only ameliorates the consciousness level of certain patients who suffered from ischemia-reperfusion injury and were comatose for a long time period after cerebral resuscitation treatment, but levodopa also improves the symptoms of neurological deficits in rats with global cerebral ischemia-reperfusion injury. However, Levodopa has not been widely used as a brain protection drug after cardiopulmonary resuscitation, because of its unclear repair mechanism. Levodopa was used to study the neuroplasticity in the hippocampus of global cerebral ischemia/reperfusion injury rat model, established by Pulsinelli's four-vessel occlusion method. Levodopa was injected intraperitoneally at 50 mg/kg/d for 7 consecutive days after 1st day of surgery. The modified neurological function score, Morris water maze, magnetic resonance imaging, Nissl and TH staining, electron microscopy and western blot were used in the present study. The results showed that levodopa improved the neurological function and learning and memory of rats after global cerebral ischemia/reperfusion injury, improved the integrity of white matter, and density of gray matter in the hippocampus, increased the number of synapses, reduced the delayed neuronal death, and increased the expression of synaptic plasticity-related proteins (BDNF, TrkB, PSD95, and Drebrin) in the hippocampus. In conclusion, levodopa can improve cognitive function after global cerebral ischemia/reperfusion injury by enhancing the synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Wenzhu Wang
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xu Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Zhengyi Yang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Lixu Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Tong Zhang
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China.,Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Wang CJ, Wu Y, Zhang Q, Yu KW, Wang YY. An enriched environment promotes synaptic plasticity and cognitive recovery after permanent middle cerebral artery occlusion in mice. Neural Regen Res 2019; 14:462-469. [PMID: 30539814 PMCID: PMC6334594 DOI: 10.4103/1673-5374.245470] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant (northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.
Collapse
Affiliation(s)
- Chuan-Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yang Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|