1
|
Olsen TC, LaGuardia JS, Chen DR, Lebens RS, Huang KX, Milek D, Noble M, Leckenby JI. Influencing factors and repair advancements in rodent models of peripheral nerve regeneration. Regen Med 2024:1-17. [PMID: 39469920 DOI: 10.1080/17460751.2024.2405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments, with rodent models essential for studying regeneration. This review examines key factors affecting outcomes. Age-related declines, like reduced nerve fiber density and impaired axonal transport of vesicles, hinder recovery. Hormonal differences influence regeneration, with BDNF/trkB critical for testosterone and nerve growth factor for estrogen signaling pathways. Species and strain selection impact outcomes, with C57BL/6 mice and Sprague-Dawley rats exhibiting varying regenerative capacities. Injury models - crush for early regeneration, chronic constriction for neuropathic pain, stretch for traumatic elongation and transection for severe lacerations - provide insights into clinically relevant scenarios. Repair techniques, such as nerve grafts and conduits, show that autografts are the gold standard for gaps over 3 cm, with success influenced by graft type and diameter. Time course analysis highlights crucial early degeneration and regeneration phases within the first month, with functional recovery stabilizing by three to six months. Early intervention optimizes regeneration by reducing scar tissue formation, while later interventions focus on remyelination. Understanding these factors is vital for designing robust preclinical studies and translating research into effective clinical treatments for peripheral nerve injuries.
Collapse
Affiliation(s)
- Timothy C Olsen
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Jonnby S LaGuardia
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - David R Chen
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - Ryan S Lebens
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - Kelly X Huang
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - David Milek
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Jonathan I Leckenby
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| |
Collapse
|
2
|
Couch B, Hayward D, Baum G, Sakthiyendran NA, Harder J, Hernandez EJ, MacKay B. A systematic review of steroid use in peripheral nerve pathologies and treatment. Front Neurol 2024; 15:1434429. [PMID: 39286807 PMCID: PMC11402678 DOI: 10.3389/fneur.2024.1434429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background The use of corticosteroids has become a part of the standard of care in various pathologies but their use in peripheral nerve injury treatment is limited. Given corticosteroids' anti-inflammatory properties and their regulatory role in neuronal protein production and myelination, corticosteroids could serve as an adjunct therapy for peripheral nerve injuries. This review aims to systematically investigate the current use of corticosteroid treatment in peripheral nerve pathologies. Methods The systematic search was performed on PubMed, MEDLINE, EMBASE, Scopus, Cochrane, and Web of Science using keywords such as "corticosteroid treatment," "peripheral nerve damage," "peripheral neuropathy," and "complications." The PRISMA guidelines were used to conduct the systematic review and all articles were reviewed by the corresponding author. After the initial search, individual study titles and abstracts were further screened and categorized using an inclusion and exclusion criteria followed by a final full-text review. Results Out of the total 27,922 identified records, 203 studies were included based on the selection criteria. These studies focused on the use and efficacy of steroids across a spectrum of compression and non-compression peripheral neuropathies such as cubital tunnel syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. Various studies noted the promising role of steroids in offering pain relief, nerve block, and nerve regeneration effects. Additionally, safety considerations and potential complications regarding steroid use in peripheral nerve injuries were analyzed. Conclusion While there is currently limited clinical utilization of corticosteroids in peripheral nerve pathologies, the anti-inflammatory and regenerative effects that steroids provide may be a beneficial tool in managing various peripheral neuropathies and their associated pain. Additional clinical trials and investigation into the mechanism of action could improve the reputation of steroid use as peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Brandon Couch
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dan Hayward
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gracie Baum
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Justin Harder
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Evan J Hernandez
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brendan MacKay
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
3
|
宋 建, 林 浩. [Experimental study on promotion of peripheral nerve regeneration by selenium-methylselenocysteine]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:598-607. [PMID: 38752248 PMCID: PMC11096885 DOI: 10.7507/1002-1892.202402031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Objective To investigate the feasibility of selenium-methylselenocysteine (SMC) to promote peripheral nerve regeneration and its mechanism of action. Methods Rat Schwann cells RSC96 cells were randomly divided into 5 groups, which were group A (without any treatment, control group), group B (adding 100 μmol/L H 2O 2), group C (adding 100 μmol/L H 2O 2+100 μmol/L SMC), group D (adding 100 μmol/L H 2O 2+200 μmol/L SMC), group E (adding 100 μmol/L H 2O 2+400 μmol/L SMC); the effect of SMC on cell proliferation was detected by MTT method, and the level of oxidative stress was detected by immunofluorescence for free radicals [reactive oxygen species (ROS)] after determining the appropriate dose group. Thirty-six 4-week-old male Sprague Dawley rats were randomly divided into 3 groups, namely, the sham operation group (Sham group), the sciatic nerve injury group (PNI group), and the SMC treatment group (SMC group), with 12 rats in each group; the rats in the PNI group were fed with food and water normally after modelling operation, and the rats in the SMC group were added 0.75 mg/kg SMC to the drinking water every day. At 4 weeks after operation, the sciatic nerves of rats in each group were sampled for neuroelectrophysiological detection of highest potential of compound muscle action potential (CMAP). The levels of inflammatory factors [interleukin 17 (IL-17), IL-6, IL-10 and oxidative stress factors catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA)] were detected by ELISA assay. The luxol fast blue (LFB) staining was used to observe the myelin density, fluorescence intensity of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was observed by immunofluorescence staining, and myelin morphology was observed by transmission electron microscopy with measurement of axon diameter. Western blot was used to detect the protein expressions of p38 mitogen-activated protein kinases (p38MAPK), phosphorylated p38MAPK (p-p38MAPK), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Results MTT assay showed that the addition of SMC significantly promoted the proliferation of RSC96 cells, and the low concentration could achieve an effective effect, so the treatment method of group C was selected for the subsequent experiments; ROS immunofluorescence test showed that group B showed a significant increase in the intensity of ROS fluorescence compared with that of group A, and group C showed a significant decrease in the intensity of ROS fluorescence compared with that of group B ( P<0.05). Neuroelectrophysiological tests showed that the highest potential of CMAP in SMC group was significantly higher than that in PNI and Sham groups ( P<0.05). ELISA assay showed that the levels of IL-6, IL-17, and MDA in PNI group were significantly higher than those in Sham group, and the levels of IL-10, SOD, and CAT were significantly lower; the levels of IL-6, IL-17, and MDA in SMC group were significantly lower than those in PNI group, and the levels of IL-10, SOD, and CAT were significantly higher ( P<0.05). LFB staining and transmission electron microscopy showed that the myelin density and the diameter of axons in the SMC group were significantly higher than those of the PNI group and the Sham group ( P<0.05). Immunofluorescence staining showed that the fluorescence intensity of GFAP and MBP in the SMC group were significantly stronger than those in the PNI group and Sham group ( P<0.05). Western blot showed that the relative expressions of Nrf2 and HO-1 proteins in the SMC group were significantly higher than those in the PNI group and Sham group, and the ratio of p-p38MAPK/p38MAPK proteins was significantly higher in the PNI group than that in the SMC group and Sham group ( P<0.05). Conclusion SMC may inhibit oxidative stress and inflammation after nerve injury by up-regulating the Nrf2/HO-1 pathway, and then inhibit the phosphorylation of p38MAPK pathway to promote the proliferation of Schwann cells, which ultimately promotes the formation of myelin sheaths and accelerates the regeneration of peripheral nerves.
Collapse
Affiliation(s)
- 建国 宋
- 上海交通大学医学院附属第一人民医院创伤中心(上海 201620)Department of Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, P. R. China
| | - 浩东 林
- 上海交通大学医学院附属第一人民医院创伤中心(上海 201620)Department of Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, P. R. China
| |
Collapse
|
4
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
5
|
Krause Neto W, Gama EF, Silva WDA, de Oliveira TVA, Vilas Boas AEDS, Ciena AP, Anaruma CA, Caperuto ÉC. The sciatic and radial nerves seem to adapt similarly to different ladder-based resistance training protocols. Exp Brain Res 2022; 240:887-896. [DOI: 10.1007/s00221-021-06295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
|
6
|
Pimentel Neto J, Rocha LC, Dos Santos Jacob C, Klein Barbosa G, Ciena AP. Postsynaptic cleft density changes with combined exercise protocols in an experimental model of muscular hypertrophy. Eur J Histochem 2021; 65. [PMID: 34346666 PMCID: PMC8404527 DOI: 10.4081/ejh.2021.3274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The vertical ladder-based protocols contribute to the NMJ junction's adaptations, and when combined with and without load, can be potentiated. The present study aimed to investigate postsynaptic regions of the biceps brachii muscle in adult male Wistar rats submitted to different vertical ladder-based protocols (Sedentary - S; Climbing - C; Climbing with Load - LC and Combined Climbing - CC). The protocols (C, LC, CC) were performed in 24 sessions, 3 x/week, for 8 weeks. The myofibrillar ATPase analysis showed an increase in cross-sectional area (CSA) of the muscle fibers Type I in all trained Groups; Type II in C and LC and reduction in CC; Type IIx higher in all trained Groups. In the postsynaptic cleft, the stained area presents smaller in Groups C, LC, and CC; the total area showed smaller than LC and higher in C and CC. The stained and total perimeter, and dispersion showed a reduction in C, LC, and CC, higher maximum diameter in Groups C and CC, and decreased in LC. Regarding the postsynaptic cleft distribution, the stained area presented a decrease in all trained Groups. The integrated density presented higher principally in CC. The NMJ count showed an increase in all trained Groups. We concluded that the vertical ladder-based protocols combined contributed to the postsynaptic region adaptations.
Collapse
Affiliation(s)
- Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| |
Collapse
|
7
|
Gholami F, Khaki R, Mirzaei B, Howatson G. Resistance training improves nerve conduction and arterial stiffness in older adults with diabetic distal symmetrical polyneuropathy: A randomized controlled trial. Exp Gerontol 2021; 153:111481. [PMID: 34280509 DOI: 10.1016/j.exger.2021.111481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Diabetes is the main cause of peripheral neuropathy where older patients are at increased risk of diabetic distal symmetrical polyneuropathy (DSPN) due to age-related nerve degeneration and vascular changes. The aim of the study was to investigate the effect of resistance training on nerve conduction, measures of neuropathy and arterial stiffness in older patients with DSPN. In a randomized controlled trial, thirty-four older adults with type-2 diabetes and peripheral neuropathy were enrolled and randomly assigned to experimental and control groups. The experimental group carried out circuit resistance training (1-3 rounds, 11 exercises, 10-15 reps, 50%-60% of 1RM, 3 times per week) for 12 weeks. Measurements were performed at baseline and 48 h after the intervention. Measures of DSPN including Michigan neuropathy screening instrument (MNSI), Michigan diabetic neuropathy score (MDNS), motor nerve action potential amplitude (APA), sensory and motor nerve conduction velocity (NCV) improved following intervention (p < 0.001, p = 0.001, p = 0.034, p = 0.001, and p = 0.001, respectively). Sensory APA did not change after the intervention (p = 0.139). Cardio-ankle vascular index (CAVI) and ankle-brachial index (ABI) improved in the experimental group compared with the control group (p = 0.014 and p = 0.033, respectively). In addition, HbA1C decreased following the 12-week resistance training program (p = 0.002). Older adults with DSPN respond positively to resistance training by improved neuropathy symptoms, nerve conduction, arterial stiffness and glucose regulation. Resistance training offers a positive intervention that can abate the progression of DSPN in older adults.
Collapse
Affiliation(s)
- Farhad Gholami
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Semnan, Iran.
| | - Raziyeh Khaki
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Semnan, Iran
| | - Batool Mirzaei
- Faculty of Sport Sciences, Shahrood University of Technology, Shahrood, Semnan, Iran
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK; Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Testosterone improves muscle function of the extensor digitorum longus in rats with sepsis. Biosci Rep 2021; 40:221929. [PMID: 31967292 PMCID: PMC7000367 DOI: 10.1042/bsr20193342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/05/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Among patients with intensive care unit-acquired weakness (ICUAW), skeletal muscle strength often decreases significantly. The present study aimed to explore the effects of testosterone propotionate on skeletal muscle using rat model of sepsis. Male SD rats were randomly divided into experimental group, model control group, sham operation group and blank control group. Rats in experimental group were given testosterone propionate two times a week, 10 mg/kg for 3 weeks. Maximal contraction force, fatigue index and cross-sectional area of the extensor digitorum longus (EDL) were measured. Myosin, IGF-1, p-AKT and p-mTOR levels in EDL were detected by Western blot. Histological changes of the testis and prostate were detected by hematoxylin and eosin staining. We found that maximal contraction force and fatigue index of EDL in experimental group were significantly higher than in model control group. Cross-sectional area of fast MHC muscle fiber of EDL in group was significantly higher than in model control group. The levels of myosin, IGF-1, p-AKT and p-mTOR of EDL in experimental group were significantly higher than in model control group. In addition, no testicle atrophy and prostate hyperplasia were detected in experimental group. In conclusion, these results suggest that testosterone propionate can significantly improve skeletal muscle strength, endurance and volume of septic rats, and the mechanism may be related to the activation of IGF-1/AKT pathway. Moreover, testosterone propionate with short duration does not cause testicular atrophy and prostate hyperplasia in septic rats. Therefore, testosterone propionate is a potential treatment for muscle malfunction in ICUAW patients.
Collapse
|
9
|
Rocha LC, Pimentel Neto J, de Sant'Ana JS, Jacob CDS, Barbosa GK, Krause Neto W, Watanabe IS, Ciena AP. Repercussions on sarcomeres of the myotendinous junction and the myofibrillar type adaptations in response to different trainings on vertical ladder. Microsc Res Tech 2020; 83:1190-1197. [PMID: 32500573 DOI: 10.1002/jemt.23510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
Abstract
The myofibrillary types establish to the skeletal muscle functional and adaptive properties that influence the sarcomeric arrangement during muscle contraction and may have repercussions on an important related force transmission region of the locomotor apparatus, the myotendinous junction (MTJ). This study aimed to describe changes in myofibrillary type and sarcomeric lengths in the belly muscle and MTJ of the soleus and plantaris muscles associated with training protocols in vertical ladder. Thirty adults male Wistar rats were divided into three groups (n = 10): Control (CTR), No-load Training (NLT), and Load Training (LT). Morphoquantitative analysis of different fibers types and sarcomere lengths were performed in distinct regions of plantaris and soleus muscles. In the plantaris muscle with both trainings, there was an increase in the cross-sectional area (CSA) in Type I and II fibers (p < .0001) while sarcomeric lengths revealed greater lengths in the proximal and distal sarcomeres of NLT, although in the LT we found greater lengths in the belly and MTJ sarcomeres. The soleus muscle showed an increase in CSA muscle fiber only in the NLT (p < .0001) and revealed alterations in belly and MTJ sarcomere lengths with training. We concluded that plantaris muscle has an adaptive effect directly associated with training load, with hypertrophy in both trainings and sarcomere length inverse from belly and MTJ, in LT associated with increased force generation and transmission at the MTJ, although soleus muscle has a lower adaptive response to training stimuli with variation in the belly and distal sarcomere of the MTJ.
Collapse
Affiliation(s)
- Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Jossei Soares de Sant'Ana
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, Brazil
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences-III, University of São Paulo (USP), São Paulo, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
10
|
Sretenovic J, Ajdzanovic V, Zivkovic V, Srejovic I, Corbic M, Milosevic V, Jakovljevic V, Milosavljevic Z. Nandrolone decanoate and physical activity affect quadriceps in peripubertal rats. Acta Histochem 2018; 120:429-437. [PMID: 29759662 DOI: 10.1016/j.acthis.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Anabolic androgenic steroids (AASs) are synthetic analogs of testosterone often used by athletes to increase the skeletal muscle mass. Our goal was to examine the effects of physical activity and physical activity combined with supraphysiological doses of nandrolone on functional morphology of the quadriceps muscle. The study included 32 peripubertal Wistar rats, divided into 4 groups: control (T-N-), nandrolone (T-N+), physical activity (T+N-) and physical activity plus nandrolone (T+N+) groups. The T+N- and T+N+ group swam for 4 weeks, 1 h/day, 5 days/week. The T-N+ and T+N+ groups received nandolone decanoate (20 mg/kg b.w.) once per week, subcutaneously. Subsequently, the rats were sacrificed and muscle specimens were prepared for the processing. Tissue sections were histochemically and immunohistochemically stained, while the image analysis was used for quantification. Longitudinal diameter of quadriceps muscle cells was increased for 21% in T-N+, for 57% in T+N- and for 64% in T+N+ group while cross section muscle cell area was increased in T-N+ for 19%, in T+N- for 47% and in T+N+ group for 59%, compared to the control. Collagen fibers covered area was increased in T-N+ group for 36%, in T+N- for 109% and in T+N+ group for 159%, compared to the control. Erythrocyte depots were decreased in T-N+ group and increased in T+N- and T+N+ group, in comparison with T-N-. VEGF depots were increased in all treated groups. Chronic administration of supraphysiological doses of AASs alone or in combination with physical activity induces hypertrophy and significant changes in the quadriceps muscle tissue structure.
Collapse
Affiliation(s)
- Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Ajdzanovic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milena Corbic
- Clinic of Neurology, KRH Klinikum Agnes Karll Laatzen, Hannover, Germany
| | - Verica Milosevic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia.
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Zoran Milosavljevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
11
|
Krause Neto W, Silva WDA, Ciena AP, de Souza RR, Anaruma CA, Gama EF. Aging Induces Changes in the Somatic Nerve and Postsynaptic Component without Any Alterations in Skeletal Muscles Morphology and Capacity to Carry Load of Wistar Rats. Front Neurosci 2017; 11:688. [PMID: 29326543 PMCID: PMC5741656 DOI: 10.3389/fnins.2017.00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to analyze the morphology of the peripheral nerve, postsynaptic compartment, skeletal muscles and weight-bearing capacity of Wistar rats at specific ages. Twenty rats were divided into groups: 10 months-old (ADULT) and 24 months-old (OLD). After euthanasia, we prepared and analyzed the tibial nerve using transmission electron microscopy and the soleus and plantaris muscles for cytofluorescence and histochemistry. For the comparison of the results between groups we used dependent and independent Student's t-test with level of significance set at p ≤ 0.05. For the tibial nerve, the OLD group presented the following alterations compared to the ADULT group: larger area and diameter of both myelinated fibers and axons, smaller area occupied by myelinated and unmyelinated axons, lower numerical density of myelinated fibers, and fewer myelinated fibers with normal morphology. Both aged soleus and plantaris end-plate showed greater total perimeter, stained perimeter, total area and stained area compared to ADULT group (p < 0.05). Yet, aged soleus end-plate presented greater dispersion than ADULT samples (p < 0.05). For the morphology of soleus and plantaris muscles, density of the interstitial volume was greater in the OLD group (p < 0.05). No statistical difference was found between groups in the weight-bearing tests. The results of the present study demonstrated that the aging process induces changes in the peripheral nerve and postsynaptic compartment without any change in skeletal muscles and ability to carry load in Wistar rats.
Collapse
Affiliation(s)
- Walter Krause Neto
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Wellington de Assis Silva
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Romeu R de Souza
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Carlos A Anaruma
- Laboratory of Morphology and Physical Activity, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Eliane F Gama
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| |
Collapse
|