1
|
Yu Y, Li Y, Wen C, Yang F, Chen X, Yi W, Deng L, Cheng X, Yu N, Huang L. High-frequency hearing vulnerability associated with the different supporting potential of Hensen's cells: SMART-Seq2 RNA sequencing. Biosci Trends 2024; 18:165-175. [PMID: 38583982 DOI: 10.5582/bst.2024.01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Hearing loss is the third most prevalent physical condition affecting communication, well-being, and healthcare costs. Sensorineural hearing loss often occurs first in the high-frequency region (basal turn), then towards the low-frequency region (apical turn). However, the mechanism is still unclear. Supporting cells play a critical role in the maintenance of normal cochlear function. The function and supporting capacity of these cells may be different from different frequency regions. Hensen's cells are one of the unique supporting cell types characterized by lipid droplets (LDs) in the cytoplasm. Here, we investigated the morphological and gene expression differences of Hensen's cells along the cochlear axis. We observed a gradient change in the morphological characteristics of Hensen's cells along the cochlear tonotopic axis, with larger and more abundant LDs observed in apical Hensen's cells. Smart-seq2 RNA-seq revealed differentially expressed genes (DEGs) between apical and basal Hensen's cells that clustered in several pathways, including unsaturated fatty acid biosynthesis, cholesterol metabolism, and fatty acid catabolism, which are associated with different energy storage capacities and metabolic potential. These findings suggest potential differences in lipid metabolism and oxidative energy supply between apical and basal Hensen's cells, which is consistent with the morphological differences of Hensen's cells. We also found differential expression patterns of candidate genes associated with hereditary hearing loss (HHL), noise-induced hearing loss (NIHL), and age-related hearing loss (ARHL). These findings indicate functional heterogeneity of SCs along the cochlear axis, contribute to our understanding of cochlear physiology and provide molecular basis evidence for future studies of hearing loss.
Collapse
Affiliation(s)
- Yiding Yu
- Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yue Li
- Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Cheng Wen
- Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Fengbo Yang
- Otolaryngology Head and Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuemin Chen
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Wenqi Yi
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Lin Deng
- Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Xiaohua Cheng
- Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Ning Yu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Lihui Huang
- Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Perez-Carpena P, Lopez-Escamez JA, Gallego-Martinez Á. A Systematic Review on the Genetic Contribution to Tinnitus. J Assoc Res Otolaryngol 2024; 25:13-33. [PMID: 38334885 PMCID: PMC10907330 DOI: 10.1007/s10162-024-00925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
PURPOSE To assess the available evidence to support a genetic contribution and define the role of common and rare variants in tinnitus. METHODS After a systematic search and quality assessment, 31 records including 383,063 patients were selected (14 epidemiological studies and 17 genetic association studies). General information on the sample size, age, sex, tinnitus prevalence, severe tinnitus distribution, and sensorineural hearing loss was retrieved. Studies that did not include data on hearing assessment were excluded. Relative frequencies were used for qualitative variables to compare different studies and to obtain average values. Genetic variants and genes were listed and clustered according to their potential role in tinnitus development. RESULTS The average prevalence of tinnitus estimated from population-based studies was 26.3% for any tinnitus, and 20% of patients with tinnitus reported it as an annoying symptom. One study has reported population-specific differences in the prevalence of tinnitus, the white ancestry being the population with a higher prevalence. Genome-wide association studies have identified and replicated two common variants in the Chinese population (rs2846071; rs4149577) in the intron of TNFRSF1A, associated with noise-induced tinnitus. Moreover, gene burden analyses in sequencing data from Spanish and Swede patients with severe tinnitus have identified and replicated ANK2, AKAP9, and TSC2 genes. CONCLUSIONS The genetic contribution to tinnitus is starting to be revealed and it shows population-specific effects in European and Asian populations. The common allelic variants associated with tinnitus that showed replication are associated with noise-induced tinnitus. Although severe tinnitus has been associated with rare variants with large effect, their role on hearing or hyperacusis has not been established.
Collapse
Affiliation(s)
- Patricia Perez-Carpena
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Department of Otolaryngology, Instituto de Investigación Biosanitaria Ibs.GRANADA, Hospital Universitario Virgen de Las Nieves, Granada, Spain.
| | - Jose A Lopez-Escamez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| | - Álvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| |
Collapse
|
3
|
Yigider AP, Yigit O. Biomarkers in Otorhinolaryngology. Biomark Med 2022. [DOI: 10.2174/9789815040463122010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biomarkers of otorhinolaryngologic diseases with higher insult over a
person’s him/herself and overall health services are summarized in brief. In order to
define, diagnose, treat and monitor any disease markers are needed.
Otorhinolaryngology (ORL) is interested in special disease entities of the region
besides otorhinolaryngologic involvements of the systemic diseases and unique forms
of pathologies such as cholesteatoma, Meniere’s disease and otosclerosis. Neoplasia is
another heading to deal with. In the following chapter, one will find an overview of
molecules that have been used as a biomarker as well as the end points of the present
research on the issue relevant with ORL. Day by day, new molecules are being named
however, the pathways of action are rather the same. Readers will find the headings
related to the most common diseases of the field, informing them about where to look
for defining new strategies of understanding of each disease.
Collapse
Affiliation(s)
- Ayse Pelin Yigider
- Istanbul Research and Training Hospital Otorhinolaryngology,Istanbul Research and Training Hospital Otorhinolaryngology, Istanbul,Turkey
| | - Ozgur Yigit
- Istanbul Research and Training Hospital Otorhinolaryngology, Istanbul, Turkey
| |
Collapse
|
4
|
Klotz L, Enz R. MGluR7 is a presynaptic metabotropic glutamate receptor at ribbon synapses of inner hair cells. FASEB J 2021; 35:e21855. [PMID: 34644430 DOI: 10.1096/fj.202100672r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023]
Abstract
Glutamate is the most pivotal excitatory neurotransmitter in the central nervous system. Metabotropic glutamate receptors (mGluRs) dimerize and can couple to inhibitory intracellular signal cascades, thereby protecting glutamatergic neurons from excessive excitation and cell death. MGluR7 is correlated with age-related hearing deficits and noise-induced hearing loss; however its exact localization in the cochlea is unknown. Here, we analyzed the expression and localization of mGluR7a and mGluR7b in mouse cochlear wholemounts in detail, using confocal microscopy and 3D reconstructions. We observed a presynaptic localization of mGluR7a at inner hair cells (IHCs), close to the synaptic ribbon. To detect mGluR7b, newly generated antibodies were characterized and showed co-localization with mGluR7a at IHC ribbon synapses. Compared to the number of synaptic ribbons, the numbers of mGluR7a and mGluR7b puncta were reduced at higher frequencies (48 to 64 kHz) and in older animals (6 and 12 months). Previously, we reported a presynaptic localization of mGluR4 and mGluR8b at this synapse type. This enables the possibility for the formation of homo- and/or heterodimeric receptors composed of mGluR4, mGluR7a, mGluR7b and mGluR8b at IHC ribbon synapses. These receptor complexes might represent new molecular targets suited for pharmacological concepts to protect the cochlea against noxious stimuli and excitotoxicity.
Collapse
Affiliation(s)
- Lisa Klotz
- Institute for Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Enz
- Institute for Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Li ZC, Fang BX, Yuan LX, Zheng K, Wu SX, Zhong N, Zeng XL. Analysis of Studies in Tinnitus-Related Gene Research. Noise Health 2021; 23:95-107. [PMID: 34975125 PMCID: PMC8772442 DOI: 10.4103/nah.nah_57_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objective Summarize and analyze the current research results of tinnitus-related genes, explore the potential links between the results of each study, and provide reference for subsequent studies. Methods Collect and sort out the research literature related to tinnitus genes included in PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang Data Knowledge Service Platform before December 31, 2019. Then the relevant contents of the literature were sorted out and summarized. Results Fifty-one articles were finally selected for analysis: 31 articles (60.8%) were classified as researches on animal models of tinnitus, and 20 (39.2%) as researches on tinnitus patients. Existing studies have shown that genes related to oxidative stress, inflammatory response, nerve excitation/inhibition, and nerve growth are differentially expressed in tinnitus patients or animal models, and have presented the potential links between genes or proteins in the occurrence and development of tinnitus. Conclusion The research on tinnitus-related genes is still in the exploratory stage, and further high-quality research evidence is needed.
Collapse
Affiliation(s)
- Zhi-Cheng Li
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bi-Xing Fang
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Lian-Xiong Yuan
- Department of Science and Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi-Xin Wu
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nanbert Zhong
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, USA
| | - Xiang-Li Zeng
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Objective and Measurable Biomarkers in Chronic Subjective Tinnitus. Int J Mol Sci 2021; 22:ijms22126619. [PMID: 34205595 PMCID: PMC8235100 DOI: 10.3390/ijms22126619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Tinnitus is associated with increased social costs and reduced quality of life through sleep disorders or psychological distress. The pathophysiology of chronic subjective tinnitus, which accounts for most tinnitus, has not been clearly elucidated. This is because chronic subjective tinnitus is difficult to evaluate objectively, and there are no objective markers that represent the diagnosis or therapeutic effect of tinnitus. Based on the results of studies on patients with chronic subjective tinnitus, objective and measurable biomarkers that help to identify the pathophysiology of tinnitus have been summarized. A total of 271 studies in PubMed, 303 in EMBASE, and 45 in Cochrane Library were found on biomarkers related to chronic subjective tinnitus published until April 2021. Duplicate articles, articles not written in English, review articles, case reports, and articles that did not match our topic were excluded. A total of 49 studies were included. Three specimens, including blood, saliva, and urine, and a total of 58 biomarkers were used as indicators for diagnosis, evaluation, prognosis, and therapeutic effectiveness of tinnitus. Biomarkers were classified into eight categories comprising metabolic, hemostatic, inflammatory, endocrine, immunological, neurologic, and oxidative parameters. Biomarkers can help in the diagnosis, measure the severity, predict prognosis, and treatment outcome of tinnitus.
Collapse
|
7
|
Haider HF, Hoare DJ, Ribeiro SF, Ribeiro D, Caria H, Trigueiros N, Borrego LM, Szczepek AJ, Papoila AL, Elarbed A, da Luz Martins M, Paço J, Sereda M. Evidence for biological markers of tinnitus: A systematic review. PROGRESS IN BRAIN RESEARCH 2021; 262:345-398. [PMID: 33931188 DOI: 10.1016/bs.pbr.2021.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Subjective tinnitus is a phantom sound heard only by the affected person and may be a symptom of various diseases. Tinnitus diagnosis and monitoring is based on subjective audiometric and psychometric methods. This review aimed to synthesize evidence for tinnitus presence or its severity. We searched several electronic databases, citation searches of the included primary studies through Web of Science, and further hand searches. At least two authors performed all systematic review steps. Sixty-two records were included and were categorized according the biological variable. Evidence for possible tinnitus biomarkers come from oxidative stress, interleukins, steroids and neurotransmitters categories. We found conflicting evidence for full blood count, vitamins, lipid profile, neurotrophic factors, or inorganic ions. There was no evidence for an association between tinnitus and the remaining categories. The current review evidences that larger studies, with stricter exclusion criteria and powerful harmonized methodological design are needed. Protocol published on PROSPERO (CRD42017070998).
Collapse
Affiliation(s)
- Haúla F Haider
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal; Comprehensive Health Research Centre (CHRC), Lisbon, Portugal.
| | - Derek J Hoare
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sara F Ribeiro
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal
| | - Diogo Ribeiro
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal
| | - Helena Caria
- Deafness Research Group, BTR Unit, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Portugal; ESS/IPS-Biomedical Sciences Department, School of Health, Polytechnic Institute of Setubal, Portugal
| | - Nuno Trigueiros
- ENT Department, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Luís Miguel Borrego
- Department of Immunology, Chronic Diseases Research Center (CEDOC), Faculty of Medical Sciences, NOVA Medical School, Lisbon, Portugal; Department of Immunoallergy, LUZ SAUDE, Hospital da Luz, Lisbon, Portugal
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ana Luísa Papoila
- Bioestatistics Department, Faculty of Medical Sciences, NOVA Medical School, Lisbon, Portugal
| | - Asma Elarbed
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Maria da Luz Martins
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal
| | - João Paço
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal
| | - Magdalena Sereda
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Wells HRR, Abidin FNZ, Freidin MB, Williams FMK, Dawson SJ. Genome-wide association study suggests that variation at the RCOR1 locus is associated with tinnitus in UK Biobank. Sci Rep 2021; 11:6470. [PMID: 33742053 PMCID: PMC7979698 DOI: 10.1038/s41598-021-85871-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Tinnitus is a prevalent condition in which perception of sound occurs without an external stimulus. It is often associated with pre-existing hearing loss or noise-induced damage to the auditory system. In some individuals it occurs frequently or even continuously and leads to considerable distress and difficulty sleeping. There is little knowledge of the molecular mechanisms involved in tinnitus which has hindered the development of treatments. Evidence suggests that tinnitus has a heritable component although previous genetic studies have not established specific risk factors. From a total of 172,608 UK Biobank participants who answered questions on tinnitus we performed a case-control genome-wide association study for self-reported tinnitus. Final sample size used in association analysis was N = 91,424. Three variants in close proximity to the RCOR1 gene reached genome wide significance: rs4906228 (p = 1.7E-08), rs4900545 (p = 1.8E-08) and 14:103042287_CT_C (p = 3.50E-08). RCOR1 encodes REST Corepressor 1, a component of a co-repressor complex involved in repressing neuronal gene expression in non-neuronal cells. Eleven other independent genetic loci reached a suggestive significance threshold of p < 1E-06.
Collapse
Affiliation(s)
- Helena R R Wells
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, SE1 7EH, UK
- UCL Ear Institute, University College London, London, WC1X 8EE, UK
| | - Fatin N Zainul Abidin
- UCL Ear Institute, University College London, London, WC1X 8EE, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 7JE, UK
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, SE1 7EH, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, SE1 7EH, UK.
| | - Sally J Dawson
- UCL Ear Institute, University College London, London, WC1X 8EE, UK.
| |
Collapse
|
9
|
Abstract
This volume has highlighted the many recent advances in tinnitus theory, models, diagnostics, therapies, and therapeutics. But tinnitus knowledge is far from complete. In this chapter, contributors to the Behavioral Neuroscience of Tinnitus consider emerging topics and areas of research needed in light of recent findings. New research avenues and methods to explore are discussed. Issues pertaining to current assessment, treatment, and research methods are outlined, along with recommendations on new avenues to explore with research.
Collapse
|
10
|
Systematic Review and Network Meta-analysis of Cognitive and/or Behavioral Therapies (CBT) for Tinnitus. Otol Neurotol 2020; 41:153-166. [DOI: 10.1097/mao.0000000000002472] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Wells HRR, Newman TA, Williams FMK. Genetics of age-related hearing loss. J Neurosci Res 2020; 98:1698-1704. [PMID: 31989664 DOI: 10.1002/jnr.24549] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
Age-related hearing loss (ARHL) has recently been confirmed as a common complex trait, that is, it is heritable with many genetic variants each contributing a small amount of risk, as well as environmental determinants. Historically, attempts to identify the genetic variants underlying the ARHL have been of limited success, relying on the selection of candidate genes based on the limited knowledge of the pathophysiology of the condition, and linkage studies in samples comprising related individuals. More recently genome-wide association studies have been performed, but these require very large samples having consistent and reliable phenotyping for hearing loss (HL), and early attempts suffered from lack of reliable replication of their findings. Replicated variants shown associated with ARHL include those lying in genes GRM7, ISG20, TRIOBP, ILDR1, and EYA4. The availability of large biobanks and the development of collaborative consortia have led to a breakthrough over the last couple of years, and many new genetic variants associated with ARHL are becoming available, through the analysis publicly available bioresources and electronic health records. These findings along with immunohistochemistry and mouse models of HL look set to help disentangle the genetic architecture of ARHL, and highlight the need for standardization of phenotyping methods to facilitate data sharing and collaboration across research networks.
Collapse
Affiliation(s)
| | - Tracey A Newman
- CES, Medicine, B85, M55, Life Sciences, University of Southampton, Southampton, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|