1
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
2
|
Leńska-Mieciek M, Madetko-Alster N, Alster P, Królicki L, Fiszer U, Koziorowski D. Inflammation in multiple system atrophy. Front Immunol 2023; 14:1214677. [PMID: 37426656 PMCID: PMC10327640 DOI: 10.3389/fimmu.2023.1214677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Misfolding protein aggregation inside or outside cells is the major pathological hallmark of several neurodegenerative diseases. Among proteinopathies are neurodegenerative diseases with atypical Parkinsonism and an accumulation of insoluble fibrillary alpha-synuclein (synucleinopathies) or hyperphosphorylated tau protein fragments (tauopathies). As there are no therapies available to slow or halt the progression of these disea ses, targeting the inflammatory process is a promising approach. The inflammatory biomarkers could also help in the differential diagnosis of Parkinsonian syndromes. Here, we review inflammation's role in multiple systems atrophy pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Marta Leńska-Mieciek
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Fiszer
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | |
Collapse
|
3
|
Tseng FS, Foo JQX, Mai AS, Tan EK. The genetic basis of multiple system atrophy. J Transl Med 2023; 21:104. [PMID: 36765380 PMCID: PMC9912584 DOI: 10.1186/s12967-023-03905-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple system atrophy (MSA) is a heterogenous, uniformly fatal neurodegenerative ɑ-synucleinopathy. Patients present with varying degrees of dysautonomia, parkinsonism, cerebellar dysfunction, and corticospinal degeneration. The underlying pathophysiology is postulated to arise from aberrant ɑ-synuclein deposition, mitochondrial dysfunction, oxidative stress and neuroinflammation. Although MSA is regarded as a primarily sporadic disease, there is a possible genetic component that is poorly understood. This review summarizes current literature on genetic risk factors and potential pathogenic genes and loci linked to both sporadic and familial MSA, and underlines the biological mechanisms that support the role of genetics in MSA. We discuss a broad range of genes that have been associated with MSA including genes related to Parkinson's disease (PD), oxidative stress, inflammation, and tandem gene repeat expansions, among several others. Furthermore, we highlight various genetic polymorphisms that modulate MSA risk, including complex gene-gene and gene-environment interactions, which influence the disease phenotype and have clinical significance in both presentation and prognosis. Deciphering the exact mechanism of how MSA can result from genetic aberrations in both experimental and clinical models will facilitate the identification of novel pathophysiologic clues, and pave the way for translational research into the development of disease-modifying therapeutic targets.
Collapse
Affiliation(s)
- Fan Shuen Tseng
- grid.163555.10000 0000 9486 5048Division of Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joel Qi Xuan Foo
- grid.276809.20000 0004 0636 696XDepartment of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Shengting Mai
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 169856, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
4
|
Association of rare variants in genes of immune regulation with pediatric autoimmune CNS diseases. J Neurol 2022; 269:6512-6529. [PMID: 35960392 PMCID: PMC9372976 DOI: 10.1007/s00415-022-11325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background There is a gap in the literature regarding genetic underpinnings of pediatric autoimmune CNS diseases. This study explored rare gene variants implicated in immune dysregulation within these disorders. Methods This was a single-center observational study of children with inflammatory CNS disorder who had genetic testing through next generation focused exome sequencing targeting 155 genes associated with innate or adaptive immunity. For in silico prediction of functional effects of single-nucleotide variants, Polymorphism Phenotyping v2, and Sorting Intolerant from Tolerant were used, and Combined Annotation Dependent Depletion (CADD) scores were calculated. Identified genes were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results Of 54 patients, 42 (77.8%) carried variant(s), among which 12 (22.2%) had 3–8 variants. Eighty-eight unique single-nucleotide variants of 55 genes were identified. The most variants were detected in UNC13D, LRBA, LYST, NOD2, DOCK8, RNASEH2A, STAT5B, and AIRE. The majority of variants (62, 70.4%) had CADD > 10. KEGG pathway analysis revealed seven genes associated with primary immunodeficiency (Benjamini 1.40E − 06), six genes with NOD-like receptor signaling (Benjamini 4.10E − 04), five genes with Inflammatory Bowel Disease (Benjamini 9.80E − 03), and five genes with NF-kappa B signaling pathway (Benjamini 1.90E − 02). Discussion We observed a high rate of identification of rare and low-frequency variants in immune regulatory genes in pediatric neuroinflammatory CNS disorders. We identified 88 unique single-nucleotide variants of 55 genes with pathway analysis revealing an enrichment of NOD2-receptor signaling, consistent with involvement of the pathway within other autoinflammatory conditions and warranting further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11325-2.
Collapse
|
5
|
Su WM, Gu XJ, Hou YB, Zhang LY, Cao B, Ou RW, Wu Y, Chen XP, Song W, Zhao B, Shang HF, Chen YP. Association Analysis of WNT3, HLA-DRB5 and IL1R2 Polymorphisms in Chinese Patients With Parkinson's Disease and Multiple System Atrophy. Front Genet 2021; 12:765833. [PMID: 34868249 PMCID: PMC8636743 DOI: 10.3389/fgene.2021.765833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The association between inflammation and neurodegeneration has long been observed in parkinson's disease (PD) and multiple system atrophy (MSA). Previous genome-wide association studies (GWAS) and meta-analyses have identified several risk loci in inflammation-associated genes associated with PD. Objective: To investigate whether polymorphisms in some inflammation-associated genes could modulate the risk of developing PD and MSA in a Southwest Chinese population. Methods: A total of 2,706 Chinese subjects comprising 1340 PD, 483 MSA and 883 healthy controls were recruited in the study. Three polymorphisms (rs2074404 GG/GT/TT, rs17425622 CC/CT/TT, rs34043159 CC/CT/TT) in genes linked to inflammation in all the subjects were genotyped by using the Sequenom iPLEX Assay. Results: The allele G of WNT3 rs2074404 can increase risk on PD (OR: 1.048, 95% CI: 1.182-1.333, p = 0.006), exclusively in the LOPD subgroup (OR: 1.166, 95% CI:1.025-1.327, p = 0.019), but not in EOPD or MSA. And the recessive model analysis also demonstrated an increased PD risk in GG genotype of this locus (OR = 1.331, p = 0.007). However, no significant differences were observed in the genotype distributions and alleles of HLA-DRB5 rs17425622 and IL1R2 rs34043159 between the PD patients and controls, between the MSA patients and controls, or between subgroups of PD or MSA and controls. Conclusion: Our results suggested the allele G of WNT3 rs2074404 have an adverse effect on PD and particularly, on the LOPD subgroup among a Chinese population.
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Jing Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Bing Hou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Yu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ru-Wei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Strong association of common variants in the miRNA-binding site of NOD2 gene with clinicopathological characteristics and disease activity of systemic lupus erythematosus. Clin Rheumatol 2021; 40:4559-4567. [PMID: 34173079 DOI: 10.1007/s10067-021-05812-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION/OBJECTIVES Systemic lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease, in which genetic susceptibility plays a pivotal role. The nucleotide oligomerization domain 2 (NOD2) gene is one of the main regulators of chronic inflammatory conditions and could be involved in SLE pathogenesis. Single nucleotide polymorphisms (SNPs) in miRNA binding sites which are located in 3'UTR of the NOD2 gene could be associated with SLE risk by dysregulation of NOD2 expression. In the present study, we assessed the possible association between SNPs rs3135500 and rs3135499 in the NOD2 gene with SLE risk in the Iranian population. METHODS A case-control study using 110 SLE patients and 120 control subjects was undertaken to estimate rs3135500 (G > A) and rs3135499 (A > C) genotypes via real-time PCR high-resolution melting method (HRM). RESULTS No significant association was observed between allele and genotype frequencies of rs3135500 and rs3135499 polymorphisms and SLE risk in this population (P > 0.05). However, there was an obvious association between rs3135500 (A allele) with laboratory factors that are associated with disease activity (P < 0.05) and some clinical manifestations that are associated with disease severity such as neurological symptoms, skin manifestations, renal involvements, and higher serum concentration of creatinine (P < 0.05). Besides, rs3135499 (C allele) was correlated with renal involvement and also the concentration of creatinine (P < 0.05). Moreover, in the patients group, the risk alleles in these polymorphisms were associated with lower age of onset (P < 0.05). CONCLUSIONS Our results suggest a substantial association between NOD2 polymorphisms with clinicopathological characteristics and SLE disease activity. Key Points • Single nucleotide polymorphisms (SNPs) in miRNA binding sites which are located in 3'UTR of the NOD2 gene could be associated with SLE risk by dysregulation of NOD2 expression. • Our results suggested that two miRSNPs (rs3135500 and rs3135499) in the NOD2 gene were meaningfully correlated with clinicopathological characteristics and disease activity of SLE.
Collapse
|
7
|
Wan L, Zhou X, Wang C, Chen Z, Peng H, Hou X, Peng Y, Wang P, Li T, Yuan H, Shi Y, Hou X, Xu K, Xie Y, He L, Xia K, Tang B, Jiang H. Alterations of the Gut Microbiota in Multiple System Atrophy Patients. Front Neurosci 2019; 13:1102. [PMID: 31680836 PMCID: PMC6813281 DOI: 10.3389/fnins.2019.01102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease, and the pathogenesis is still quite challenging. Emerging evidence has shown that the brain–gut–microbiota axis served a pivotal role in neurological diseases; however, researches utilizing metagenomic sequencing to analyze the alteration in gut microbiota of MSA patients were quite rare. Here, we carried out metagenomic sequencing in feces of 15 MSA patients and 15 healthy controls, to characterize the alterations in gut microbial composition and function of MSA patients in mainland China. The results showed that gut microbial community of MSA patients was significantly different from healthy controls, characterized by increased genus Akkermansia and species Roseburia hominis, Akkermansia muciniphila, Alistipes onderdonkii, Streptococcus parasanguinis, and Staphylococcus xylosus, while decreased genera Megamonas, Bifidobacterium, Blautia, and Aggregatibacter and species Bacteroides coprocola, Megamonas funiformis, Bifidobacterium pseudocatenulatum, Clostridium nexile, Bacteroides plebeius, and Granulicatella adiacens. Further, functional analysis based on the KEGG database revealed aberrant functional pathways in fecal microbiome of MSA patients. In conclusion, our findings provided evidence for dysbiosis in gut microbiota of Chinese MSA cohorts and helped develop new testable hypotheses on pathophysiology of MSA.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunrong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Puzhi Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianjiao Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaocan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Keqin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yue Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Department of Neurology, Xinjiang Medical University, Urumchi, China
| |
Collapse
|
8
|
Cai X, Xu Q, Zhou C, Zhou L, Dai W, Ji G. The association of nucleotide-binding oligomerization domain 2 gene polymorphisms with the risk of asthma in the Chinese Han population. Mol Genet Genomic Med 2019; 7:e00675. [PMID: 30950247 PMCID: PMC6565575 DOI: 10.1002/mgg3.675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetic background is one of the important risk factors for development of asthma. The nucleotide-binding oligomerization domain 2 (NOD2) has been involved in the pathogenesis of asthma. The purpose of this study was to explore the relationship between NOD2 gene polymorphisms and asthma susceptibility in the Chinese Han population. METHODS Children with asthma (n = 309) and Healthy children (n = 163) were recruited from Yancheng Third People's Hospital, Yancheng, China, between January 2016 and December 2017. The NOD2 gene polymorphisms were measured by the Snapshot SNP genotyping assays. Genotyping was performed for 4 tag SNPs of NOD2. Serum IFN-β levels were measured by ELISA. RESULTS The serum IFN-β levels were significantly lower in Asthmatic children than those in the controls (p < 0.001). Low levels of IFN-β may be related to the susceptibility to severe asthma. The rs3135499 C allele was associated with a significantly increased risk of asthma as compared with the rs3135499 A allele. CONCLUSION The rs3135499 polymorphism of NOD2 gene and IFN-β may play a role in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Xulong Cai
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China
| | - Qiaolan Xu
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China
| | - Chenrong Zhou
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China
| | - Li Zhou
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China
| | - Weihua Dai
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China
| | - Guanchi Ji
- Department of Pediatrics, Yancheng Third People's Hospital, Yancheng, China
| |
Collapse
|