1
|
Dhauria M, Mondal R, Deb S, Shome G, Chowdhury D, Sarkar S, Benito-León J. Blood-Based Biomarkers in Alzheimer's Disease: Advancing Non-Invasive Diagnostics and Prognostics. Int J Mol Sci 2024; 25:10911. [PMID: 39456697 PMCID: PMC11507237 DOI: 10.3390/ijms252010911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is expected to rise dramatically in incidence due to the global population aging. Traditional diagnostic approaches, such as cerebrospinal fluid analysis and positron emission tomography, are expensive and invasive, limiting their routine clinical use. Recent advances in blood-based biomarkers, including amyloid-beta, phosphorylated tau, and neurofilament light, offer promising non-invasive alternatives for early AD detection and disease monitoring. This review synthesizes current research on these blood-based biomarkers, highlighting their potential to track AD pathology and enhance diagnostic accuracy. Furthermore, this review uniquely integrates recent findings on protein-protein interaction networks and microRNA pathways, exploring novel combinations of proteomic, genomic, and epigenomic biomarkers that provide new insights into AD's molecular mechanisms. Additionally, we discuss the integration of these biomarkers with advanced neuroimaging techniques, emphasizing their potential to revolutionize AD diagnostics. Although large-scale validation is still needed, these biomarkers represent a critical advancement toward more accessible, cost-effective, and early diagnostic tools for AD.
Collapse
Affiliation(s)
| | - Ritwick Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India;
| | - Shramana Deb
- Department of Stroke Medicine, Institute of Neuroscience, Kolkata 700017, India;
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Kolkata 700054, India;
| | - Dipanjan Chowdhury
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Shramana Sarkar
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, ES-28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), ES-28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ES-28029 Madrid, Spain
- Department of Medicine, Complutense University, ES-28040 Madrid, Spain
| |
Collapse
|
2
|
González-Fernández C, González P, Maqueda A, Pérez V, Rodríguez FJ. Enhancing motor functional recovery in spinal cord injury through pharmacological inhibition of Dickkopf-1 with BHQ880 antibody. Biomed Pharmacother 2024; 176:116792. [PMID: 38795645 DOI: 10.1016/j.biopha.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Mounting experimental evidence has underscored the remarkable role played by the Wnt family of proteins in the spinal cord functioning and therapeutic potential in spinal cord injury (SCI). We aim to provide a therapeutic prospect associated with the modulation of canonical Wnt signaling, examining the spatio-temporal expression pattern of Dickkopf-1 (Dkk1) and its neutralization after SCI. We employ an intraparenchymal injection of the clinically validated Dkk1-blocking antibody, BHQ880, to elucidate its effects in SCI. METHODS A rat model of contusion SCI was used. Histological analyses were performed, wherein Dkk1 protein was sought, and ELISA analyses were employed for Dkk1 detection in cerebrospinal fluid and serum. To ascertain the BHQ880 therapeutic effect, rats were subjected to SCI and then injected with the antibody in the lesion epicenter 24 hours post-injury (hpi). Subsequent evaluation of motor functional recovery extended up to 56 days post-injury (dpi). qRT-PCR and histological analyses were conducted. RESULTS We demonstrate the presence of Dkk1 in the healthy rat spinal cord, with pronounced alterations observed following injury, primarily concentrated in the epicenter regions. Notably, a significative upregulation of Dkk1 was detected at 24 hpi, peaking at 3 dpi and remaining elevated until 42 dpi. Moreover, we revealed that early administration of BHQ880 considerably improved motor functional recovery, promoted preservation of myelinated tissue, and reduced astroglial and microglia/macrophage reactivity. Furthermore, there was a decrease in the acute expression of different inflammatory genes. CONCLUSIONS Collectively, our findings highlight the therapeutic potential of BHQ880 treatment in the context of SCI.
Collapse
Affiliation(s)
- Carlos González-Fernández
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| | - Pau González
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Alfredo Maqueda
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Virginia Pérez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| |
Collapse
|
3
|
Baeva ME, Tottenham I, Koch M, Camara-Lemarroy C. Biomarkers of disability worsening in inactive primary progressive multiple sclerosis. J Neuroimmunol 2024; 387:578268. [PMID: 38157653 DOI: 10.1016/j.jneuroim.2023.578268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To investigate serum biomarkers of progression in inactive primary progressive multiple sclerosis (PPMS). METHODS We measured protein biomarkers (growth differentiation factor-15 (GDF-15), dickkopf-1 (DKK-1), neuron specific enolase (NSE) and cathepsin-D) in serum samples from 39 patients with inactive PPMS included in a clinical trial enrolling people with PPMS (clinicaltrials.gov identifier NCT02913157) and investigated the association of these biomarker levels with clinical disability at baseline and during follow-up. We then performed a meta-analysis of publicly available transcriptomic datasets to investigate the gene expression of these biomarkers in the CNS in progressive MS. RESULTS When compared with healthy controls, people with PPMS had higher serum levels of GDF-15, DKK-1 and cathepsin-D at baseline. These findings match those in our meta-analysis which found increased expression of GDF-15 and cathepsin-D in the CNS in progressive MS. At baseline, elevated serum DKK-1 was associated with worse Expanded Disability Status Scale (EDSS) and nine-hole peg test (9HPT) scores. None of the other biomarkers levels significantly correlated with EDSS, Timed 25-Foot Walk Test (T25FWT), 9HPT, or cognitive measures. However, serum GDF-15 and cathepsin-D were higher at baseline in participants who developed worsening disability. Our receiver operating characteristic curve showed that higher serum GDF-15 and cathepsin-D at baseline significantly discriminated between participants who worsened in T25FWT and 9HPT and those who remained stable. CONCLUSIONS Patients with PPMS have altered levels of GDF-15, DKK-1 and cathepsin-D in serum, and GDF-15 and cathepsin-D may have predictive value in progression free of inflammatory activity in PPMS.
Collapse
Affiliation(s)
- Maria-Elizabeth Baeva
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Isabelle Tottenham
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Marcus Koch
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Carlos Camara-Lemarroy
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada.
| |
Collapse
|
4
|
Ding Y, Li L, Wang S, Cao Y, Yang M, Dai Y, Lin H, Li J, Liu Y, Wang Z, Liu W, Tao J. Electroacupuncture promotes neurogenesis in the dentate gyrus and improves pattern separation in an early Alzheimer's disease mouse model. Biol Res 2023; 56:65. [PMID: 38041203 PMCID: PMC10693055 DOI: 10.1186/s40659-023-00472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Impaired pattern separation occurs in the early stage of Alzheimer's disease (AD), and hippocampal dentate gyrus (DG) neurogenesis participates in pattern separation. Here, we investigated whether spatial memory discrimination impairment can be improved by promoting the hippocampal DG granule cell neogenesis-mediated pattern separation in the early stage of AD by electroacupuncture (EA). METHODS Five familial AD mutations (5 × FAD) mice received EA treatment at Baihui and Shenting points for 4 weeks. During EA, mice were intraperitoneally injected with BrdU (50 mg/kg) twice a day. rAAV containing Wnt5a shRNA was injected into the bilateral DG region, and the viral efficiency was evaluated by detecting Wnt5a mRNA levels. Cognitive behavior tests were conducted to assess the impact of EA treatment on cognitive function. The hippocampal DG area Aβ deposition level was detected by immunohistochemistry after the intervention; The number of BrdU+/CaR+ cells and the gene expression level of calretinin (CaR) and prospero homeobox 1(Prox1) in the DG area of the hippocampus was detected to assess neurogenesis by immunofluorescence and western blotting after the intervention; The gene expression levels of FZD2, Wnt5a, DVL2, p-DVL2, CaMKII, and p-CaMKII in the Wnt signaling pathway were detected by Western blotting after the intervention. RESULTS Cognitive behavioral tests showed that 5 × FAD mice had impaired pattern separation (P < 0.001), which could be improved by EA (P < 0.01). Immunofluorescence and Western blot showed that the expression of Wnt5a in the hippocampus was decreased (P < 0.001), and the neurogenesis in the DG was impaired (P < 0.001) in 5 × FAD mice. EA could increase the expression level of Wnt5a (P < 0.05) and promote the neurogenesis of immature granule cells (P < 0.05) and the development of neuronal dendritic spines (P < 0.05). Interference of Wnt5a expression aggravated the damage of neurogenesis (P < 0.05), weakened the memory discrimination ability (P < 0.05), and inhibited the beneficial effect of EA (P < 0.05) in AD mice. The expression level of Wnt pathway related proteins such as FZD2, DVL2, p-DVL2, CAMKII, p-CAMKII increased after EA, but the effect of EA was inhibited after Wnt5a was knocked down. In addition, EA could reduce the deposition of Aβ plaques in the DG without any impact on Wnt5a. CONCLUSION EA can promote hippocampal DG immature granule cell neogenesis-mediated pattern separation to improve spatial memory discrimination impairment by regulating Wnt5a in 5 × FAD mice.
Collapse
Affiliation(s)
- Yanyi Ding
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Long Li
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Sinuo Wang
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yajun Cao
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Minguang Yang
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yaling Dai
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Huawei Lin
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jianhong Li
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yulu Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Zhifu Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, Fujian, 350122, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
- Fujian Key Laboratory of Rehabilitation Technology, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
5
|
Fessel J. The several ways to authentically cure Alzheimer's dementia. Ageing Res Rev 2023; 92:102093. [PMID: 37865143 DOI: 10.1016/j.arr.2023.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Although drugs may slow its progression, authentic cure of AD has never been accomplished. Here, six approaches are suggested that might achieve genuine cure. The six therapies include: 1) treatments addressing levels of TGF-β and Wnt/β-catenin, that become significantly reduced after MCI transitions to AD, and addressing also the impaired epithelial-to-mesenchymal transition (EMT) in AD's pathogenesis; 2) and 3) are two formulations that address the inadequate counter-responses to initial loss of cognition; 4) treatments addressing the brain cells whose impaired functions result in MCI and dementia; 5) the need for using partner drugs even when a particular drug addresses a single pathogenetic cause such as amyloid deposition; 6) enhancing the likelihood of genuine cure by using combinations of approaches chosen from the foregoing. Briefly, genuine cure of AD is possible; however, since AD denotes not one but multiple, phenotypically similar conditions, no one therapy can be generalized to all cases.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA.
| |
Collapse
|
6
|
Cummings J, Hahn-Pedersen JH, Eichinger CS, Freeman C, Clark A, Tarazona LRS, Lanctôt K. Exploring the relationship between patient-relevant outcomes and Alzheimer's disease progression assessed using the clinical dementia rating scale: a systematic literature review. Front Neurol 2023; 14:1208802. [PMID: 37669257 PMCID: PMC10470645 DOI: 10.3389/fneur.2023.1208802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023] Open
Abstract
Background People with Alzheimer's disease (AD) have difficulties in performing activities of daily living (ADLs) as the disease progresses, commonly experience neuropsychiatric symptoms (NPS), and often have comorbidities such as cardiovascular disease. These factors all contribute to a requirement for care and considerable healthcare costs in AD. The Clinical Dementia Rating (CDR) scale is a widely used measure of dementia staging, but the correlations between scores on this scale and patient-/care partner-relevant outcomes have not been characterized fully. We conducted a systematic literature review to address this evidence gap. Methods Embase, MEDLINE, and the Cochrane Library were searched September 13, 2022, to identify published studies (no restriction by date or country) in populations with mild cognitive impairment due to AD or AD dementia. Studies of interest reported data on the relationships between CDR Global or CDR-Sum of Boxes (CDR-SB) scores and outcomes including NPS, comorbidities, ADLs, nursing home placement, healthcare costs, and resource use. Results Overall, 58 studies met the inclusion criteria (42 focusing on comorbidities, 14 on ADLs or dependence, five on nursing home placement, and six on economic outcomes). CDR/CDR-SB scores were correlated with the frequency of multiple NPS and with total scores on the Neuropsychiatric Inventory. For cardiovascular comorbidities, no single risk factor was consistently linked to AD progression. Increasing CDR/CDR-SB scores were correlated with decline in multiple different measures of ADLs and were also associated with nursing home placement and increasing costs of care. Conclusion NPS, ADLs, and costs of care are clearly linked to AD progression, as measured using CDR Global or CDR-SB scores, from the earliest stages of disease. This indicates that scores derived from the CDR are a meaningful way to describe the severity and burden of AD for patients and care partners across disease stages.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, United States
| | | | | | | | | | | | - Krista Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Fessel J. Analysis of Why Alzheimer's Dementia Never Spontaneously Reverses, Suggests the Basis for Curative Treatment. J Clin Med 2023; 12:4873. [PMID: 37510988 PMCID: PMC10381682 DOI: 10.3390/jcm12144873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
A paradox regarding Alzheimer's dementia (AD) and mild cognitive impairment (MCI) is thats spontaneous cure of AD has never been reported, whereas spontaneous cure for MCI occurs fequently. This article analyzes what accounts for this difference. It holds that it is not merely because, for any condition, a stage is reached beyond which it cannot be reversed, since even widely metastatic cancer would be curable were there effective chemotherapy and rheumatoid arthritis became controllable when immune-suppressant treatment was introduced; thus, so could AD be reversible via effective therapy. The analysis presented leads to an explanation of the paradox that is in four categories: (1) levels of transforming growth factor-β are significantly reduced after the transition from MCI to AD; (2) levels of Wnt/β-catenin are significantly reduced after the transition; (3) there is altered epidermal-mesenchymal transition (EMT) in neurons after the transition; (4) there may be risk factors that are either newly operative or pre-existing but worsened at the time of transition, that are particular to individual patients. It is suggested that addressing and ameliorating all of those four categories might cure AD. Medications to address and ameliorate each of the four categories are described.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
8
|
Zhang K, Zhu Z, Shi M, Guo D, Liu Y, Bu X, Che B, Xu T, Yang P, Chen J, Xu T, He J, Zhang Y. Serum Dickkopf-1 levels and poststroke depression in ischemic stroke patients. J Affect Disord 2022; 310:337-342. [PMID: 35561890 DOI: 10.1016/j.jad.2022.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Serum Dickkopf-1 (Dkk-1) levels are associated with poor ischemic stroke prognosis, although their impact on poststroke depression (PSD) remains unclear. This study aimed to examine the association between serum Dkk-1 levels and PSD. METHODS Serum Dkk-1 levels were measured in 564 patients with ischemic stroke who participated in the China Antihypertensive Trial in Acute Ischemic Stroke (CATIS). The patients' depression status at 3 months after stroke was assessed using the Hamilton Rating Scale for Depression (HRSD-24). The HRSD score cutoff point for the diagnosis of depression was ≥8. RESULTS A total of 224 (39.72%) patients were categorized as having PSD 3 months after ischemic stroke. After adjusting for potential confounders, including age, sex, and other important covariates, elevated Dkk-1 levels were associated with an increased risk of PSD (odds ratio [OR], 1.92; 95% confidence interval [CI], 1.14-3.22; Ptrend = 0.037). Similarly, each standard deviation (SD) increase in log-transformed Dkk-1 levels was associated with a 24% increased risk of PSD (OR, 1.24; 95% CI, 1.03-1.49; P = 0.025). Subgroup analyses further confirmed the significant associations between Dkk-1 levels and PSD. CONCLUSION Higher serum Dkk-1 levels at baseline are independently associated with an increased risk of PSD at 3 months after stroke, suggesting that Dkk-1 levels may be a promising prognostic biomarker for PSD. LIMITATIONS This study measured serum Dkk-1 levels only in the acute phase of stroke not in different phases; therefore, the relationship between dynamic changes in Dkk-1 levels and PSD could not be evaluated.
Collapse
Affiliation(s)
- Kaixin Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yang Liu
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Tian Xu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Liu X, Wang K, Wei X, Xie T, Lv B, Zhou Q, Wang X. Interaction of NF-κB and Wnt/β-catenin Signaling Pathways in Alzheimer's Disease and Potential Active Drug Treatments. Neurochem Res 2021; 46:711-731. [PMID: 33523396 DOI: 10.1007/s11064-021-03227-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
The most important neuropathological features of Alzheimer's disease (AD) are extracellular amyloid-β protein (Aβ) deposition, tau protein hyperphosphorylation and activation of neurometabolic reaction in the brain accompanied by neuronal and synaptic damage, and impaired learning and memory function. According to the amyloid cascade hypothesis, increased Aβ deposits in the brain to form the core of the senile plaques that initiate cascade reactions, affecting the synapses and stimulating activation of microglia, resulting in neuroinflammation. A growing number of studies has shown that NF-κB and Wnt/β-catenin pathways play important roles in neurodegenerative diseases, especially AD. In this review, we briefly introduce the connection between neuroinflammation-mediated synaptic dysfunction in AD and elaborated on the mechanism of these two signaling pathways in AD-related pathological changes, as well as their interaction. Based on our interest in natural compounds, we also briefly introduce and conduct preliminary screening of potential therapeutics for AD.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kaiyue Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xing Wei
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tian Xie
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Lv
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Aghaizu ND, Jin H, Whiting PJ. Dysregulated Wnt Signalling in the Alzheimer's Brain. Brain Sci 2020; 10:E902. [PMID: 33255414 PMCID: PMC7761504 DOI: 10.3390/brainsci10120902] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signalling system is essential for both the developing and adult central nervous system. It regulates numerous cellular functions ranging from neurogenesis to blood brain barrier biology. Dysregulated Wnt signalling can thus have significant consequences for normal brain function, which is becoming increasingly clear in Alzheimer's disease (AD), an age-related neurodegenerative disorder that is the most prevalent form of dementia. AD exhibits a range of pathophysiological manifestations including aberrant amyloid precursor protein processing, tau pathology, synapse loss, neuroinflammation and blood brain barrier breakdown, which have been associated to a greater or lesser degree with abnormal Wnt signalling. Here we provide a comprehensive overview of the role of Wnt signalling in the CNS, and the research that implicates dysregulated Wnt signalling in the ageing brain and in AD pathogenesis. We also discuss the opportunities for therapeutic intervention in AD via modulation of the Wnt signalling pathway, and highlight some of the challenges and the gaps in our current understanding that need to be met to enable that goal.
Collapse
Affiliation(s)
- Nozie D. Aghaizu
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Hanqing Jin
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Paul J. Whiting
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
- ARUK Drug Discovery Institute (DDI), University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
11
|
Zhao Y, Ren J, Hillier J, Lu W, Jones EY. Caffeine inhibits Notum activity by binding at the catalytic pocket. Commun Biol 2020; 3:555. [PMID: 33033363 PMCID: PMC7544826 DOI: 10.1038/s42003-020-01286-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Notum inhibits Wnt signalling via enzymatic delipidation of Wnt ligands. Restoration of Wnt signalling by small molecule inhibition of Notum may be of therapeutic benefit in a number of pathologies including Alzheimer's disease. Here we report Notum activity can be inhibited by caffeine (IC50 19 µM), but not by demethylated caffeine metabolites: paraxanthine, theobromine and theophylline. Cellular luciferase assays show Notum-suppressed Wnt3a function can be restored by caffeine with an EC50 of 46 µM. The dissociation constant (Kd) between Notum and caffeine is 85 µM as measured by surface plasmon resonance. High-resolution crystal structures of Notum complexes with caffeine and its minor metabolite theophylline show both compounds bind at the centre of the enzymatic pocket, overlapping the position of the natural substrate palmitoleic lipid, but using different binding modes. The structural information reported here may be of relevance for the design of more potent brain-accessible Notum inhibitors.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - James Hillier
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Edith Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
12
|
Hasanzadeh Z, Nourazarian A, Nikanfar M, Laghousi D, Vatankhah AM, Sadrirad S. Evaluation of the Serum Dkk-1, Tenascin-C, Oxidative Stress Markers Levels and Wnt Signaling Pathway Genes Expression in Patients with Alzheimer's Disease. J Mol Neurosci 2020; 71:879-887. [PMID: 32935274 DOI: 10.1007/s12031-020-01710-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
Early diagnosis of Alzheimer's disease (AD) using potential biomarkers may help with implementing early therapeutic interventions, monitoring, and ultimately disease treatment. The current study aimed to evaluate serum levels of DKK-1, TNC, and oxidative stress markers, as well as analyzing the expression of LRP6, GSK3A, and GSK3B genes in patients with AD. Serum levels of DKK-1, TNC, TOS, TAC, and MDA were measured in 40 AD patients and 40 healthy individuals. Additionally, the relative expressions of LRP6, GSK3A, and GSK3B genes in whole blood were evaluated. Receiver operating characteristic (ROC) analysis was used to investigate the incremental diagnostic value of each factor in the study groups. Mean serum levels of DKK-1, TNC, TOS, TAC, and MDA were significantly higher in the AD group compared to the healthy group (p < 0.001). Moreover, a significant difference was observed in the expression of LRP6 and GSK3A genes (p < 0.001) between patients and healthy groups. However, the expression of GSK3B did not significantly differ between the two groups (p > 0.05). With considerable sensitivity and specificity, ROC analysis demonstrated the diagnostic efficacy of DKK-1 and TNC serum levels in AD within an area under the ROC curve of ≥ 0.98 (p ˂ 0.001). The results showed that evaluating serum levels of DKK-1 and TNC, as well as assessing the expression of LRP6, could be utilized for diagnosis and monitoring of AD patients.
Collapse
Affiliation(s)
- Zahra Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayeh Sadrirad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|