1
|
Wang J, Huang Q, Chen X, You Z, He K, Guo Q, Huang Y, Yang Y, Lin Z, Guo T, Zhao J, Guan Y, Li B, Xie F. Tau pathology is associated with synaptic density and longitudinal synaptic loss in Alzheimer's disease. Mol Psychiatry 2024; 29:2799-2809. [PMID: 38589563 DOI: 10.1038/s41380-024-02501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
The associations of synaptic loss with amyloid-β (Aβ) and tau pathology measured by positron emission tomography (PET) and plasma analysis in Alzheimer's disease (AD) patients are unknown. Seventy-five participants, including 26 AD patients, 19 mild cognitive impairment (MCI) patients, and 30 normal controls (NCs), underwent [18F]SynVesT-1 PET/MR scans to assess synaptic density and [18F]florbetapir and [18F]MK6240 PET/CT scans to evaluate Aβ plaques and tau tangles. Among them, 19 AD patients, 12 MCI patients, and 29 NCs had plasma Aβ42/40 and p-tau181 levels measured by the Simoa platform. Twenty-three individuals, 6 AD patients, 4 MCI patients, and 13 NCs, underwent [18F]SynVesT-1 PET/MRI and [18F]MK6240 PET/CT scans during a one-year follow-up assessment. The associations of Aβ and tau pathology with cross-sectional and longitudinal synaptic loss were investigated using Pearson correlation analyses, generalized linear models and mediation analyses. AD patients exhibited lower synaptic density than NCs and MCI patients. In the whole cohort, global Aβ deposition was associated with synaptic loss in the medial (r = -0.431, p < 0.001) and lateral (r = -0.406, p < 0.001) temporal lobes. Synaptic density in almost all regions was related to the corresponding regional tau tangles independent of global Aβ deposition in the whole cohort and stratified groups. Synaptic density in the medial and lateral temporal lobes was correlated with plasma Aβ42/40 (r = 0.300, p = 0.020/r = 0.289, p = 0.025) and plasma p-tau 181 (r = -0.412, p = 0.001/r = -0.529, p < 0.001) levels in the whole cohort. Mediation analyses revealed that tau tangles mediated the relationship between Aβ plaques and synaptic density in the whole cohort. Baseline tau pathology was positively associated with longitudinal synaptic loss. This study suggested that tau burden is strongly linked to synaptic density independent of Aβ plaques, and also can predict longitudinal synaptic loss.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xing Chen
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 310000, China
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 310000, China
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, CT, 06520-8048, USA
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, 100089, China
| | - Zengping Lin
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 310000, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Wang J, Gao L, Liu J, Dang L, Wei S, Hu N, Gao Y, Peng W, Shang S, Huo K, Wang J, Qu Q. The Association of Plasma Amyloid-β and Cognitive Decline in Cognitively Unimpaired Population. Clin Interv Aging 2022; 17:555-565. [PMID: 35480964 PMCID: PMC9035463 DOI: 10.2147/cia.s357994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose This study investigates the relationship between baseline plasma Aβ and cognitive decline during follow-up in cognitively unimpaired population. Materials and Methods Cognitively unimpaired population was selected from people who lived in the suburbs of Xi’an, China. The levels of plasma Aβ1-42 and Aβ1-40 were tested using commercial enzyme-linked immunosorbent assay (ELISA). The mini-mental state examination (MMSE) and neuropsychological battery were used to assess cognition. Two years later, MMSE was tested again, and significant cognitive decline was defined as a decrease in MMSE scores ≥5 points. Logistic regression analysis was performed to analyze the relationship between baseline plasma Aβ and cognitive change during the two-year follow-up. Results A total of 1144 participants completed the study, among whom 59 subjects (5.2%) presented significant cognitive decline. The high plasma Aβ1-42 level group had more significant cognitive decline (P = 0.023). Multivariable logistic regression analysis showed that significant cognitive decline was associated with the high levels of baseline plasma Aβ1-42 (OR = 1.043, 95% CI: 1.005–1.083, P = 0.026). However, significant cognitive decline was not associated with baseline plasma Aβ1-40 levels and Aβ1-42 /Aβ1-40 ratio. Conclusion Population with high level of baseline plasma Aβ1-42 manifested significant cognitive decline over 2 years; however, further investigation on the dynamics of plasma Aβ and long-term follow-up are needed.
Collapse
Affiliation(s)
- Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ling Gao
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ningwei Hu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yao Gao
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Wei Peng
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jingyi Wang
- Huyi Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Correspondence: Qiumin Qu, Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an, 710061, People’s Republic of China, Tel/Fax +86 29 8532 4083, Email
| |
Collapse
|
3
|
Corp DT, Bereznicki HGK, Clark GM, Youssef GJ, Fried PJ, Jannati A, Davies CB, Gomes-Osman J, Kirkovski M, Albein-Urios N, Fitzgerald PB, Koch G, Di Lazzaro V, Pascual-Leone A, Enticott PG. Large-scale analysis of interindividual variability in single and paired-pulse TMS data. Clin Neurophysiol 2021; 132:2639-2653. [PMID: 34344609 DOI: 10.1016/j.clinph.2021.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study brought together over 60 transcranial magnetic stimulation (TMS) researchers to create the largest known sample of individual participant single and paired-pulse TMS data to date, enabling a more comprehensive evaluation of factors driving response variability. METHODS Authors of previously published studies were contacted and asked to share deidentified individual TMS data. Mixed-effects regression investigated a range of individual and study level variables for their contribution to variability in response to single and paired-pulse TMS data. RESULTS 687 healthy participant's data were pooled across 35 studies. Target muscle, pulse waveform, neuronavigation use, and TMS machine significantly predicted an individual's single-pulse TMS amplitude. Baseline motor evoked potential amplitude, motor cortex hemisphere, and motor threshold (MT) significantly predicted short-interval intracortical inhibition response. Baseline motor evoked potential amplitude, test stimulus intensity, interstimulus interval, and MT significantly predicted intracortical facilitation response. Age, hemisphere, and TMS machine significantly predicted MT. CONCLUSIONS This large-scale analysis has identified a number of factors influencing participants' responses to single and paired-pulse TMS. We provide specific recommendations to minimise interindividual variability in single and paired-pulse TMS data. SIGNIFICANCE This study has used large-scale analyses to give clarity to factors driving variance in TMS data. We hope that this ongoing collaborative approach will increase standardisation of methods and thus the utility of single and paired-pulse TMS.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Hannah G K Bereznicki
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - George J Youssef
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Peter J Fried
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte B Davies
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Joyce Gomes-Osman
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Central Clinical School, Melbourne, Australia
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-Medico, Rome, Italy
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | |
Collapse
|