1
|
Kron NS, Fieber LA, Baker L, Campbell C, Schmale MC. Host response to Aplysia Abyssovirus 1 in nervous system and gill. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105211. [PMID: 38885747 PMCID: PMC11378725 DOI: 10.1016/j.dci.2024.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The California sea hare (Aplysia californica) is a model for age associated cognitive decline. Recent researched identified a novel nidovirus, Aplysia Abyssovirus 1, with broad tropism enriched in the Aplysia nervous system. This virus is ubiquitous in wild and maricultured, young and old animals without obvious pathology. Here we re-evaluated gene expression data from several previous studies to investigate differential expression in the nervous system and gill in response to virus and aging as well as the mutational spectrum observed in the viral sequences obtained from these datasets. Viral load and age were highly correlated, indicating persistent infection. Upregulated genes in response to virus were enriched for immune genes and signatures of ER and proteostatic stress, while downregulated genes were enriched for mitochondrial metabolism. Differential expression with respect to age suggested increased iron accumulation and decreased glycolysis, fatty acid metabolism, and proteasome function. Interaction of gene expression trends associated with viral infection and aging suggest that viral infection likely plays a role in aging in the Aplysia nervous system. Mutation analysis of viral RNA identified signatures suggesting ADAR and AID/APOBEC like deaminase act as part of Aplysia anti-viral defense.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - Lydia Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | | | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
2
|
Randolph EC, Fieber LA. Improvements in operant memory of Aplysia are correlated with age and specific gene expression. Front Behav Neurosci 2023; 17:1221794. [PMID: 37936650 PMCID: PMC10626442 DOI: 10.3389/fnbeh.2023.1221794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
The transcription factor Aplysia CCAAT/enhancer binding protein (ApC/EBP) is expressed as an immediate early gene in the cAMP responsive element binding protein (CREB) mediated gene cascade, and it has essential functions in the synaptic consolidation of memory following a learning event. Synaptic consolidation primarily involves morphological changes at neuronal synapses, which are facilitated through the reorganization of the actin and microtubular cytoarchitecture of the cell. During early nervous system development, the transmembrane synaptic protein teneurin acts directly upon neuronal presynaptic microtubules and postsynaptic spectrin-based cytoskeletons to facilitate the creation of new synapses. It is reasonable to hypothesize that teneurin may also be linked to learning-induced synaptic changes and is a potential candidate to be a later gene expressed in the CREB-mediated gene cascade downstream of ApC/EBP. To assess the role of ApC/EBP and teneurin in learning and memory in the marine snail Aplysia californica, young (age 7-8 months) and aged (age 13-15 months; aging stage AII) siblings of Aplysia were trained in an operant conditioning paradigm-learning food is inedible (LFI)-over 2 days, during which they learned to modify the feeding reflex. Aged Aplysia had enhanced performance of the LFI task on the second day than younger siblings although far more aged animals were excluded from the analysis because of the initial failure in learning to recognize the inedible probe. After 2 days of training, ApC/EBP isoform X1 mRNA and teneurin mRNA were quantified in selected neurons of the buccal ganglia, the locus of neural circuits in LFI. Teneurin expression was elevated in aged Aplysia compared to young siblings regardless of training. ApC/EBP isoform X1 expression was significantly higher in untrained aged animals than in untrained young siblings but decreased in trained aged animals compared to untrained aged animals. Elevated levels of ApC/EBP isoform X1 and teneurin mRNA before training may have contributed to the enhancement of LFI performance in the aged animals that successfully learned.
Collapse
Affiliation(s)
| | - Lynne A. Fieber
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School, Miami, FL, United States
| |
Collapse
|
3
|
Rivi V, Benatti C, Rigillo G, Blom JMC. Invertebrates as models of learning and memory: investigating neural and molecular mechanisms. J Exp Biol 2023; 226:jeb244844. [PMID: 36719249 DOI: 10.1242/jeb.244844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this Commentary, we shed light on the use of invertebrates as model organisms for understanding the causal and conserved mechanisms of learning and memory. We provide a condensed chronicle of the contribution offered by mollusks to the studies on how and where the nervous system encodes and stores memory and describe the rich cognitive capabilities of some insect species, including attention and concept learning. We also discuss the use of planarians for investigating the dynamics of memory during brain regeneration and highlight the role of stressful stimuli in forming memories. Furthermore, we focus on the increasing evidence that invertebrates display some forms of emotions, which provides new opportunities for unveiling the neural and molecular mechanisms underlying the complex interaction between stress, emotions and cognition. In doing so, we highlight experimental challenges and suggest future directions that we expect the field to take in the coming years, particularly regarding what we, as humans, need to know for preventing and/or delaying memory loss. This article has an associated ECR Spotlight interview with Veronica Rivi.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Joan M C Blom
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
4
|
Cristina B, Veronica R, Silvia A, Andrea G, Sara C, Luca P, Nicoletta B, M.C. BJ, Silvio B, Fabio T. Identification and characterization of the kynurenine pathway in the pond snail Lymnaea stagnalis. Sci Rep 2022; 12:15617. [PMID: 36114337 PMCID: PMC9481534 DOI: 10.1038/s41598-022-19652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Dysregulation of the kynurenine pathway (KP) is implicated in many human diseases and disorders, from immunological, metabolic, neurodegenerative, and neuropsychiatric conditions to cancer, and represents an appealing target for new therapeutic approaches. In this intricate scenario, invertebrates, like Lymnaea stagnalis (LS), provide a flexible tool to unravel the complexity of the KP. Starting from the available LS genome and transcriptome, we identified putative transcripts of all KP enzymes containing an ORF; each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate model organisms. Sequences were confirmed by qualitative PCR and sequencing. At the same time, the qRT-PCR analysis revealed that Lym IDO-like, Lym TDO-like, Lym AFMID-like, Lym KMO-like, Lym AADAT-like, Lym KYAT I/III-like, Lym KYNU-like, Lym HAAO-like, and Lym ACMSD-like showed widespread tissue expression. Then, tryptophan, kynurenine, kynurenic acid, anthranilic acid, 3-hydroxy-kynurenine, xanthurenic acid, picolinic acid, and quinolinic acid were identified in the hemolymph of LS by UHPLC-Q exactive mass spectrometer. Our study provides the most thorough characterization to date of the KP in an invertebrate model, supporting the value of LS for future functional studies of this pathway at the cellular, synaptic, and behavioral levels.
Collapse
|
5
|
Kron NS, Fieber LA. Aplysia Neurons as a Model of Alzheimer's Disease: Shared Genes and Differential Expression. J Mol Neurosci 2021; 72:287-302. [PMID: 34664226 PMCID: PMC8840921 DOI: 10.1007/s12031-021-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Although Alzheimer’s disease (AD) is the most common form of dementia in the United States, development of therapeutics has proven difficult. Invertebrate alternatives to current mammalian AD models have been successfully employed to study the etiology of the molecular hallmarks of AD. The marine snail Aplysia californica offers a unique and underutilized system in which to study the physiological, behavioral, and molecular impacts of AD. Mapping of the Aplysia proteome to humans and cross-referencing with two databases of genes of interest in AD research identified 898 potential orthologs of interest in Aplysia. Included among these orthologs were alpha, beta and gamma secretases, amyloid-beta, and tau. Comparison of age-associated differential expression in Aplysia sensory neurons with that of late-onset AD in the frontal lobe identified 59 ortholog with concordant differential expression across data sets. The 21 concordantly upregulated genes suggested increased cellular stress and protein dyshomeostasis. The 47 concordantly downregulated genes included important components of diverse neuronal processes, including energy metabolism, mitochondrial homeostasis, synaptic signaling, Ca++ regulation, and cellular cargo transport. Compromised functions in these processes are known hallmarks of both human aging and AD, the ramifications of which are suggested to underpin cognitive declines in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
6
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
7
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. WITHDRAWN: Utilizing comparative models in biomedical research. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110938. [PMID: 33737041 DOI: 10.1016/j.cbpa.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 255, 2021, 110593, https://doi.org/10.1016/j.cbpb.2021.110593. The duplicate article has therefore been withdrawn.
The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | | |
Collapse
|
8
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. Utilizing comparative models in biomedical research. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110593. [PMID: 33779562 DOI: 10.1016/j.cbpb.2021.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms. It is often the case that animals initially used to gain knowledge of some unique biochemical or physiological process finds foothold in the biomedical community and becomes an established model. The choice of a particular model for biomedical research is an ongoing process and model validation must keep pace with existing and emerging technologies. While the importance of non-mammalian models, such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis, is well known, we also seek to bring attention to emerging alternative models of both invertebrates and vertebrates, which are less established but of interest to the comparative biochemistry and physiology community.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | | |
Collapse
|