1
|
Yoon JH, Lee H, Kwon D, Lee D, Lee S, Cho E, Kim J, Kim D. Integrative approach of omics and imaging data to discover new insights for understanding brain diseases. Brain Commun 2024; 6:fcae265. [PMID: 39165479 PMCID: PMC11334939 DOI: 10.1093/braincomms/fcae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Treatments that can completely resolve brain diseases have yet to be discovered. Omics is a novel technology that allows researchers to understand the molecular pathways underlying brain diseases. Multiple omics, including genomics, transcriptomics and proteomics, and brain imaging technologies, such as MRI, PET and EEG, have contributed to brain disease-related therapeutic target detection. However, new treatment discovery remains challenging. We focused on establishing brain multi-molecular maps using an integrative approach of omics and imaging to provide insights into brain disease diagnosis and treatment. This approach requires precise data collection using omics and imaging technologies, data processing and normalization. Incorporating a brain molecular map with the advanced technologies through artificial intelligence will help establish a system for brain disease diagnosis and treatment through regulation at the molecular level.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hagyeong Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayoung Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jaehoon Kim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| |
Collapse
|
2
|
Li J, Li X, Chen F, Li W, Chen J, Zhang B. Studying the Alzheimer's disease continuum using EEG and fMRI in single-modality and multi-modality settings. Rev Neurosci 2024; 35:373-386. [PMID: 38157429 DOI: 10.1515/revneuro-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is a biological, clinical continuum that covers the preclinical, prodromal, and clinical phases of the disease. Early diagnosis and identification of the stages of Alzheimer's disease (AD) are crucial in clinical practice. Ideally, biomarkers should reflect the underlying process (pathological or otherwise), be reproducible and non-invasive, and allow repeated measurements over time. However, the currently known biomarkers for AD are not suitable for differentiating the stages and predicting the trajectory of disease progression. Some objective parameters extracted using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are widely applied to diagnose the stages of the AD continuum. While electroencephalography (EEG) has a high temporal resolution, fMRI has a high spatial resolution. Combined EEG and fMRI (EEG-fMRI) can overcome single-modality drawbacks and obtain multi-dimensional information simultaneously, and it can help explore the hemodynamic changes associated with the neural oscillations that occur during information processing. This technique has been used in the cognitive field in recent years. This review focuses on the different techniques available for studying the AD continuum, including EEG and fMRI in single-modality and multi-modality settings, and the possible future directions of AD diagnosis using EEG-fMRI.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Futao Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weiping Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, Jiangsu, 210008, China
- Institute of Brain Science, Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
3
|
Hata M, Miyazaki Y, Mori K, Yoshiyama K, Akamine S, Kanemoto H, Gotoh S, Omori H, Hirashima A, Satake Y, Suehiro T, Takahashi S, Ikeda M. Utilizing portable electroencephalography to screen for pathology of Alzheimer's disease: a methodological advancement in diagnosis of neurodegenerative diseases. Front Psychiatry 2024; 15:1392158. [PMID: 38855641 PMCID: PMC11157607 DOI: 10.3389/fpsyt.2024.1392158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Background The current biomarker-supported diagnosis of Alzheimer's disease (AD) is hindered by invasiveness and cost issues. This study aimed to address these challenges by utilizing portable electroencephalography (EEG). We propose a novel, non-invasive, and cost-effective method for identifying AD, using a sample of patients with biomarker-verified AD, to facilitate early and accessible disease screening. Methods This study included 35 patients with biomarker-verified AD, confirmed via cerebrospinal fluid sampling, and 35 age- and sex-balanced healthy volunteers (HVs). All participants underwent portable EEG recordings, focusing on 2-minute resting-state EEG epochs with closed eyes state. EEG recordings were transformed into scalogram images, which were analyzed using "vision Transformer(ViT)," a cutting-edge deep learning model, to differentiate patients from HVs. Results The application of ViT to the scalogram images derived from portable EEG data demonstrated a significant capability to distinguish between patients with biomarker-verified AD and HVs. The method achieved an accuracy of 73%, with an area under the receiver operating characteristic curve of 0.80, indicating robust performance in identifying AD pathology using neurophysiological measures. Conclusions Our findings highlight the potential of portable EEG combined with advanced deep learning techniques as a transformative tool for screening of biomarker-verified AD. This study not only contributes to the neurophysiological understanding of AD but also opens new avenues for the development of accessible and non-invasive diagnostic methods. The proposed approach paves the way for future clinical applications, offering a promising solution to the limitations of advanced diagnostic practices for dementia.
Collapse
Affiliation(s)
- Masahiro Hata
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Miyazaki
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Mori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Yoshiyama
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shoshin Akamine
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shiho Gotoh
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisaki Omori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Psychiatry, Esaka Hospital, Osaka, Japan
| | - Atsuya Hirashima
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Psychiatry, Esaka Hospital, Osaka, Japan
| | - Yuto Satake
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Suehiro
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shun Takahashi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Clinical Research and Education Center, Asakayama General Hospital, Osaka, Japan
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
4
|
Kim NH, Park U, Yang DW, Choi SH, Youn YC, Kang SW. PET-validated EEG-machine learning algorithm predicts brain amyloid pathology in pre-dementia Alzheimer's disease. Sci Rep 2023; 13:10299. [PMID: 37365198 DOI: 10.1038/s41598-023-36713-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Developing reliable biomarkers is important for screening Alzheimer's disease (AD) and monitoring its progression. Although EEG is non-invasive direct measurement of brain neural activity and has potentials for various neurologic disorders, vulnerability to noise, difficulty in clinical interpretation and quantification of signal information have limited its clinical application. There have been many research about machine learning (ML) adoption with EEG, but the accuracy of detecting AD is not so high or not validated with Aβ PET scan. We developed EEG-ML algorithm to detect brain Aβ pathology among subjective cognitive decline (SCD) or mild cognitive impairment (MCI) population, and validated it with Aβ PET. 19-channel resting-state EEG and Aβ PET were collected from 311 subjects: 196 SCD(36 Aβ +, 160 Aβ -), 115 MCI(54 Aβ +, 61Aβ -). 235 EEG data were used for training ML, and 76 for validation. EEG features were standardized for age and sex. Multiple important features sets were selected by 6 statistics analysis. Then, we trained 8 multiple machine learning for each important features set. Meanwhile, we conducted paired t-test to find statistically different features between amyloid positive and negative group. The best model showed 90.9% sensitivity, 76.7% specificity and 82.9% accuracy in MCI + SCD (33 Aβ +, 43 Aβ -). Limited to SCD, 92.3% sensitivity, 75.0% specificity, 81.1% accuracy (13 Aβ +, 24 Aβ -). 90% sensitivity, 78.9% specificity and 84.6% accuracy for MCI (20 Aβ +, 19 Aβ -). Similar trends of EEG power have been observed from the group comparison between Aβ + and Aβ -, and between MCI and SCD: enhancement of frontal/ frontotemporal theta; attenuation of mid-beta in centroparietal areas. The present findings suggest that accurate classification for beta-amyloid accumulation in the brain based on QEEG alone could be possible, which implies that QEEG is a promising biomarker for beta-amyloid. Since QEEG is more accessible, cost-effective, and safer than amyloid PET, QEEG-based biomarkers may play an important role in the diagnosis and treatment of AD. We expect specific patterns in QEEG could play an important role to predict future progression of cognitive impairment in the preclinical stage of AD. Further feature engineering and validation with larger dataset is recommended.
Collapse
Affiliation(s)
- Nam Heon Kim
- iMediSync Inc, 15F, 411, Teheran-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Ukeob Park
- iMediSync Inc, 15F, 411, Teheran-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Dong Won Yang
- Department of Neurology, St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seung Wan Kang
- iMediSync Inc, 15F, 411, Teheran-ro, Gangnam-gu, Seoul, Republic of Korea.
- National Standard Reference Data Center for Korean EEG, Seoul National University College of Nursing, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Chu C, Zhang Z, Wang J, Wang L, Shen X, Bai L, Li Z, Dong M, Liu C, Yi G, Zhu X. Evolution of brain network dynamics in early Parkinson's disease with mild cognitive impairment. Cogn Neurodyn 2023; 17:681-694. [PMID: 37265660 PMCID: PMC10229513 DOI: 10.1007/s11571-022-09868-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022] Open
Abstract
How mild cognitive impairment (MCI) is instantiated in dynamically interacting and spatially distributed functional brain networks remains an unexplored mystery in early Parkinson's disease (PD). We applied a machine-learning technology based on personalized sliding-window algorithm to track continuously time-varying and overlapping subnetworks under the functional brain networks calculated form resting state electroencephalogram data within a sample of 33 early PD patients (13 early PD patients with MCI and 20 early PD patients without MCI). We decoded a set of subnetworks that captured surprisingly dynamically varying and integrated interactions among certain brain lobes. We observed that the master expressed subnetworks were particularly transient, and flexibly switching between high and low expression during integration into a dynamic brain network. This transience was particularly salient in a subnetwork predominantly linking temporal-parietal-occipital lobes, which decreases in both expression and flexibility in early PD patients with MCI and expresses their degree of cognitive impairment. Moreover, MCI induced a regularly interrupted, slow evolution of subnetworks in functional brain network dynamics in early PD at the individual level, and the dynamic expression characteristics of subnetworks also reflected the degree of cognitive impairment in patients with early PD. Collectively, these results provide novel and deeper insights regarding MCI-induced abnormal dynamical interaction and large-scale changes in functional brain network of early PD.
Collapse
Affiliation(s)
- Chunguang Chu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Zhen Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Liufang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Xiao Shen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Lipeng Bai
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Zhuo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Mengmeng Dong
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| |
Collapse
|
6
|
Liu M, Liu B, Ye Z, Wu D. Bibliometric analysis of electroencephalogram research in mild cognitive impairment from 2005 to 2022. Front Neurosci 2023; 17:1128851. [PMID: 37021134 PMCID: PMC10067679 DOI: 10.3389/fnins.2023.1128851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
BackgroundElectroencephalogram (EEG), one of the most commonly used non-invasive neurophysiological examination techniques, advanced rapidly between 2005 and 2022, particularly when it was used for the diagnosis and prognosis of mild cognitive impairment (MCI). This study used a bibliometric approach to synthesize the knowledge structure and cutting-edge hotspots of EEG application in the MCI.MethodsRelated publications in the Web of Science Core Collection (WosCC) were retrieved from inception to 30 September 2022. CiteSpace, VOSviewer, and HistCite software were employed to perform bibliographic and visualization analyses.ResultsBetween 2005 and 2022, 2,905 studies related to the application of EEG in MCI were investigated. The United States had the highest number of publications and was at the top of the list of international collaborations. In terms of total number of articles, IRCCS San Raffaele Pisana ranked first among institutions. The Clinical Neurophysiology published the greatest number of articles. The author with the highest citations was Babiloni C. In descending order of frequency, keywords with the highest frequency were “EEG,” “mild cognitive impairment,” and “Alzheimer’s disease”.ConclusionThe application of EEG in MCI was investigated using bibliographic analysis. The research emphasis has shifted from examining local brain lesions with EEG to neural network mechanisms. The paradigm of big data and intelligent analysis is becoming more relevant in EEG analytical methods. The use of EEG to link MCI to other related neurological disorders, and to evaluate new targets for diagnosis and treatment, has become a new research trend. The above-mentioned findings have implications in the future research on the application of EEG in MCI.
Collapse
Affiliation(s)
- Mingrui Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zelin Ye
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongyu Wu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Dongyu Wu,
| |
Collapse
|
7
|
Kim NH, Yang DW, Choi SH, Kang SW. Machine Learning to Predict Brain Amyloid Pathology in Pre-dementia Alzheimer’s Disease Using QEEG Features and Genetic Algorithm Heuristic. Front Comput Neurosci 2021; 15:755499. [PMID: 34867252 PMCID: PMC8632633 DOI: 10.3389/fncom.2021.755499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
The use of positron emission tomography (PET) as the initial or sole biomarker of β-amyloid (Aβ) brain pathology may inhibit Alzheimer’s disease (AD) drug development and clinical use due to cost, access, and tolerability. We developed a qEEG-ML algorithm to predict Aβ pathology among subjective cognitive decline (SCD) and mild cognitive impairment (MCI) patients, and validated it using Aβ PET. We compared QEEG data between patients with MCI and those with SCD with and without PET-confirmed beta-amyloid plaque. We compared resting-state eyes-closed electroencephalograms (EEG) patterns between the amyloid positive and negative groups using relative power measures from 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2), divided into eight frequency bands, delta (1–4 Hz), theta (4–8 Hz), alpha 1 (8–10 Hz), alpha 2 (10–12 Hz), beta 1 (12–15 Hz), beta 2 (15–20 Hz), beta 3 (20–30 Hz), and gamma (30–45 Hz) calculated by FFT and denoised by iSyncBrain®. The resulting 152 features were analyzed using a genetic algorithm strategy to identify optimal feature combinations and maximize classification accuracy. Guided by gene modeling methods, we treated each channel and frequency band of EEG power as a gene and modeled it with every possible combination within a given dimension. We then collected the models that showed the best performance and identified the genes that appeared most frequently in the superior models. By repeating this process, we converged on a model that approximates the optimum. We found that the average performance increased as this iterative development of the genetic algorithm progressed. We ultimately achieved 85.7% sensitivity, 89.3% specificity, and 88.6% accuracy in SCD amyloid positive/negative classification, and 83.3% sensitivity, 85.7% specificity, and 84.6% accuracy in MCI amyloid positive/negative classification.
Collapse
Affiliation(s)
| | - Dong Won Yang
- Department of Neurology, St. Mary’s Hospital, Seoul, South Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, South Korea
| | - Seung Wan Kang
- iMediSync Inc., Seoul, South Korea
- National Standard Reference Data Center for Korean EEG, Seoul National University College of Nursing, Seoul, South Korea
- *Correspondence: Seung Wan Kang,
| |
Collapse
|