1
|
Hao SW, Li TR, Han C, Han Y, Cai YN. Associations Between Levels of Peripheral NCAPH2 Promoter Methylation and Different Stages of Alzheimer's Disease: A Cross-Sectional Study. J Alzheimers Dis 2023; 92:899-909. [PMID: 36806511 DOI: 10.3233/jad-221211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Several studies have examined NCAPH2 methylation in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD), but little is known of NCAPH2 methylation in subjective cognitive decline (SCD). OBJECTIVE To examine whether methylation of peripheral NCAPH2 are differentially changed at various phases of AD, and whether it could serve as a diagnostic biomarker for SCD. METHODS A total of 40 AD patients, 52 aMCI patients, 148 SCD patients, and 193 cognitively normal controls (NCs) were recruited in the current case-control study. Besides, 54 cognitively normal individuals have received amyloid positron emission tomography (amyloid PET) scans. Using bisulfite pyrosequencing method, we measured blood DNA methylation in the NCAPH2 gene promoter. RESULTS The main outcomes were: 1) For SCD, there was no significant difference between SCD and NC regarding NCAPH2 methylation; 2) For aMCI, NCAPH2 methylation at CpG2 were significantly lower in aMCI compared with NC and SCD in the entire population and male subgroup; 3) For AD, NCAPH2 methylation at CpG1 were significantly lower in AD compared with NC among females; 4) A relationship with apolipoprotein E (APOE) ɛ4 status was shown. Receiver operating characteristic (ROC) analysis by combining NCAPH2 methylation, age, education, and APOEɛ4 status could distinguish between patients with aMCI (area under the curve (AUC): 0.742) and AD (AUC: 0.873) from NCs. CONCLUSION NCAPH2 methylation levels were altered at the aMCI and AD stage and may be convenient and cost-effective biomarkers of AD and aMCI.
Collapse
Affiliation(s)
- Shu-Wen Hao
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Tao-Ran Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Chao Han
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan-Ning Cai
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Ren S, Hu J, Huang L, Li J, Jiang D, Hua F, Guan Y, Guo Q, Xie F, Huang Q. Graph Analysis of Functional Brain Topology Using Minimum Spanning Tree in Subjective Cognitive Decline. J Alzheimers Dis 2022; 90:1749-1759. [PMID: 36336928 DOI: 10.3233/jad-220527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Subjects with subjective cognitive decline (SCD) are proposed as a potential population to screen for Alzheimer's disease (AD). OBJECTIVE Investigating brain topologies would help to mine the neuromechanisms of SCD and provide new insights into the pathogenesis of AD. METHODS Objectively cognitively unimpaired subjects from communities who underwent resting-state BOLD-fMRI and clinical assessments were included. The subjects were categorized into SCD and normal control (NC) groups according to whether they exhibited self-perceived cognitive decline and were worried about it. The minimum spanning tree (MST) of the functional brain network was calculated for each subject, based on which the efficiency and centrality of the brain network organization were explored. Hippocampal/parahippocampal volumes were also detected to reveal whether the early neurodegeneration of AD could be seen in SCD. RESULTS A total of 49 subjects in NC and 95 subjects in SCD group were included in this study. We found the efficiency and centrality of brain network organization, as well as the hippocampal/parahippocampal volume were preserved in SCD. Besides, SCD exhibited normal cognitions, including memory, language, and execution, but increased depressive and anxious levels. Interestingly, language and execution, instead of memory, showed a significant positive correlation with the maximum betweenness centrality of the functional brain organization and hippocampal/parahippocampal volume. Neither depressive nor anxious scales exhibited correlations with the brain functional topologies or hippocampal/parahippocampal volume. CONCLUSION SCD exhibited preserved efficiency and centrality of brain organization. In clinical practice, language and execution as well as depression and anxiety should be paid attention in SCD.
Collapse
Affiliation(s)
- Shuhua Ren
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingchao Hu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Huang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Lin J, Yang S, Wang C, Yu E, Zhu Z, Shi J, Li X, Xin J, Chen X, Pan X. Prediction of Alzheimer’s Disease Using Patterns of Methylation Levels in Key Immunologic-Related Genes. J Alzheimers Dis 2022; 90:783-794. [DOI: 10.3233/jad-220701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: DNA methylation is expected to become a kind of new diagnosis and treatment method of Alzheimer’s disease (AD). Neuroinflammation- and immune-related pathways represent one of the major genetic risk factors for AD. Objective: We aimed to investigate DNA methylation levels of 7 key immunologic-related genes in peripheral blood and appraise their applicability in the diagnosis of AD. Methods: Methylation levels were obtained from 222 participants (101 AD, 72 MC, 49 non-cognitively impaired controls). Logistic regression models for diagnosing AD were established after least absolute shrinkage and selection operator (LASSO) and best subset selection (BSS), evaluated by respondent working curve and decision curve analysis for sensitivity. Results: Six differentially methylated positions (DMPs) in the MCI group and 64 in the AD group were found, respectively. Among them, there were 2 DMPs in the MCI group and 30 DMPs in the AD group independent of age, gender, and APOE4 carriers (p < 0.05). AD diagnostic prediction models differentiated AD from normal controls both in a training dataset (LASSO: 8 markers, including methylation levels at ABCA7_1040077, CNR1_88166293, CX3CR1_39322324, LRRK2_40618505, LRRK2_40618493, NGFR_49496745, TARDBP_11070956, TARDBP_11070840, area under the curve [AUC] = 0.81; BSS: 2 markers, including methylation levels at ABCA7_1040077 and CX3CR1_39322324, AUC = 0.80) and a testing dataset (AUC = 0.84, AUC = 0.82, respectively). Conclusion: Our work indicated that methylation levels of 7 key immunologic-related genes (ABCA7, CNR1, CX3CR1, CSF1 R, LRRK2, NGFR, and TARDBP) in peripheral blood was altered in AD and the models including methylation of immunologic-related genes biomarkers improved prediction of AD.
Collapse
Affiliation(s)
- Junhan Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Siyu Yang
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Chao Wang
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Erhan Yu
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Zhibao Zhu
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jinying Shi
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiang Li
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jiawei Xin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Pang D, Yu S, Yang X. A mini-review of the role of condensin in human nervous system diseases. Front Mol Neurosci 2022; 15:889796. [PMID: 35992200 PMCID: PMC9386267 DOI: 10.3389/fnmol.2022.889796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023] Open
Abstract
Mitosis and meiosis are crucial life activities that transmit eukaryotic genetic information to progeny in a stable and orderly manner. The formation and appearance of chromosomes, which are derived from chromatin, are the preconditions and signs of mitosis. When entering mitosis, interphase loose chromatin is highly spiralized and folded to form compact chromosomes. In recent years, it has been found that in addition to the well-known DNA, histones, and topoisomerase, a large protein complex called condensin plays an important role in the process of chromosome formation. Numerous studies have shown that the abnormal function of condensin can lead to incomplete or excessive concentration of chromatin, as well as disorder of genome organization process, abnormal transmission of genetic information, and ultimately lead to various diseases of individual, especially in nervous system diseases. In this review, the biological function of condensin and the potential pathogenic mechanism of condensin in nervous system diseases are briefly summarized. Therefore, the investigation of these mechanisms makes a significant contribution to the understanding of those related diseases and provides new ideas for clinical treatments.
Collapse
Affiliation(s)
- Du Pang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
- *Correspondence: Shengping Yu Xuejun Yang
| | - Xuejun Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Affiliated Hospital of Tsinghua University, Beijing, China
- *Correspondence: Shengping Yu Xuejun Yang
| |
Collapse
|