1
|
Hasanabadi AJ, Beirami E, Kamaei M, Esfahani DE. Effect of imipramine on memory, adult neurogenesis, neuroinflammation, and mitochondrial biogenesis in a rat model of alzheimer's disease. Exp Gerontol 2024; 194:112517. [PMID: 38986856 DOI: 10.1016/j.exger.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 μl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mehdi Kamaei
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
2
|
Xu SL, Fan M, Ma MD, Zheng Q, Chen PQ, Wei YD, Sun HM, Sun HZ, Ge JF. Differential toxic and antiepileptic features of Vigabatrin raceme and its enantiomers. Brain Res 2024; 1838:148991. [PMID: 38754803 DOI: 10.1016/j.brainres.2024.148991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The study aimed to investigate the potential pharmacological and toxicological differences between Vigabatrin (VGB) and its enantiomers S-VGB and R-VGB. The researchers focused on the toxic effects and antiepileptic activity of these compounds in a rat model. METHODS The epileptic rat model was established by intraperitoneal injection of kainic acid, and the antiepileptic activity of VGB, S-VGB, and VGB was observed, focusing on the improvements in seizure latency, seizure frequency and sensory, motor, learning and memory deficits in epileptic rats, as well as the hippocampal expression of key molecular associated with synaptic plasticity and the Wnt/β-catenin/GSK 3β signaling pathway. The acute toxic test was carried out and the LD50 was calculated, and tretinal damages in epileptic rats were also evaluated. RESULT The results showed that S-VGB exhibited stronger antiepileptic and neuroprotective effects with lower toxicity compared to VGB raceme. These findings suggest that S-VGB and VGB may modulate neuronal damage, glial cell activation, and synaptic plasticity related to epilepsy through the Wnt/β-catenin/GSK 3β signaling pathway. The study provides valuable insights into the potential differential effects of VGB enantiomers, highlighting the potential of S-VGB as an antiepileptic drug with reduced side effects. CONCLUSION S-VGB has the highest antiepileptic effect and lowest toxicity compared to VGB and R-VGB.
Collapse
Affiliation(s)
- Song-Lin Xu
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qiang Zheng
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Peng-Quan Chen
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Ya-Dong Wei
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hui-Min Sun
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Huai-Zhi Sun
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Gao X, Sun H, Wei Y, Niu J, Hao S, Sun H, Tang G, Qi C, Ge J. Protective effect of melatonin against metabolic disorders and neuropsychiatric injuries in type 2 diabetes mellitus mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155805. [PMID: 38851097 DOI: 10.1016/j.phymed.2024.155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia and progressive cognitive dysfunction, and our clinical investigation revealed that the plasma concentration of melatonin (Mlt) decreased and was closely related to cognition in T2DM patients. However, although many studies have suggested that Mlt has a certain protective effect on glucose and lipid metabolism disorders and neuropsychiatric injury, the underlying mechanism of Mlt against T2DM-related metabolic and cognitive impairments remains unclear. PURPOSE The aim of the present study was to investigate the therapeutic effect of Mlt on metabolic disorders and Alzheimer's disease (AD)-like neuropsychiatric injuries in T2DM mice and to explore the possible underlying molecular mechanism involved. METHODS A T2DM mouse model was established by a combination of a high-fat diet (HFD) and streptozotocin (STZ, 100 mg/kg, i.p.), and Mlt (5, 10 or 20 mg/kg) was intragastrically administered for six consecutive weeks. The serum levels of glycolipid metabolism indicators were measured, behavioral performance was tested, and the protein expression of key molecules involved in the regulation of synaptic plasticity, circadian rhythms, and neuroinflammation in the hippocampus was detected. Moreover, the fluorescence intensities of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (IBA-1), amyloid β-protein (Aβ) and phosphorylated Tau (p-Tau) in the hippocampus were also observed. RESULTS Treatment with Mlt not only improved T2DM-related metabolic disorders, as indicated by increased serum concentrations of fasting blood glucose (FBG), glycosylated hemoglobin (HbAlc), insulin (INS), total cholesterol (TC) and triglyceride (TG), improved glucose tolerance and liver and pancreas function but also alleviated AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, as indicated by decreased immobility time in the tail suspension test (TST) and forced swimming test (FST), increased preference indices of novel objects or novel arms in the novel object recognition test (NOR) and Y-maze test (Y-maze), and improved platform positioning capability in the Morris water maze (MWM) test. Moreover, treatment with Mlt also improved the hyperactivation of astrocytes and microglia in the hippocampus of mice, accompanied by reduced expression of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), Aβ, and p-Tau and increased expression of brain-derived neurotrophic factor (BDNF), Synapsin I, Synaptotagmin I, melatonin receptor 1B (MT1B), brain muscle arnt-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), period 2 (Per2), and cryptochrome 2 (Cry2). CONCLUSION Mlt alleviated T2DM-related metabolic disorders and AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, possibly through a mechanism involving the regulation of glial activation and associated neuroinflammation and the balancing of synaptic plasticity and circadian rhythms in the hippocampus.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Jiachun Niu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Guozhang Tang
- School of 1st Clinic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, PR China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China.
| |
Collapse
|
4
|
Pourhadi M, Zali H, Ghasemi R, Faizi M, Mojab F, Soufi Zomorrod M. Restoring Synaptic Function: How Intranasal Delivery of 3D-Cultured hUSSC Exosomes Improve Learning and Memory Deficits in Alzheimer's Disease. Mol Neurobiol 2024; 61:3724-3741. [PMID: 38010560 DOI: 10.1007/s12035-023-03733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Memory problems are often the first signs of cognitive impairment related to Alzheimer's disease (AD), and stem cells and stem cell-derived exosomes (EXOs) have been studied for their therapeutic potential to improve the disease signs. While many studies have shown the anti-inflammatory and immunomodulatory effects of stem cells and exosomes on improving memory in different AD models, there is still insufficient data to determine how they modulate neural plasticity to enhance spatial memory and learning ability. Therefore, we conducted a study to investigate the effects of exosomes derived from 3D-cultured human Unrestricted Somatic Stem Cells (hUSSCs) on spatial memory and neuroplasticity markers in a sporadic rat model of AD. Using male Wistar rats induced by intracerebral ventricle injection of streptozotocin, we demonstrated that intranasal administration of hUSSC-derived exosomes could decrease Aβ accumulation and improve learning and memory in the Morris water maze test. We also observed an increase in the expression of pre-synaptic and post-synaptic molecules involved in neuronal plasticity, including NMDAR1, integrin β1, synaptophysin, pPKCα, and GAP-43, in the hippocampus. Our findings suggest that intranasal administration of exosomes can ameliorate spatial learning and memory deficits in rats, at least in part, by increasing the expression of neuroplasticity proteins. These results may encourage researchers to further investigate the molecular pathways involved in memory improvement after stem cell and exosome therapy, with the goal of increasing the efficacy and safety of exosome-based treatments for AD.
Collapse
Affiliation(s)
- Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Mojab
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Zhong XL, Huang Y, Du Y, He LZ, Chen YW, Cheng Y, Liu H. Unlocking the Therapeutic Potential of Exosomes Derived From Nasal Olfactory Mucosal Mesenchymal Stem Cells: Restoring Synaptic Plasticity, Neurogenesis, and Neuroinflammation in Schizophrenia. Schizophr Bull 2024; 50:600-614. [PMID: 38086528 PMCID: PMC11059802 DOI: 10.1093/schbul/sbad172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SCZ) is a multifaceted mental disorder marked by a spectrum of symptoms, including hallucinations, delusions, cognitive deficits, and negative symptoms. Its etiology involves intricate interactions between genetic and environmental factors, posing significant challenges for effective treatment. We hypothesized that intranasal administration of exosomes derived from nasal olfactory mucosal mesenchymal stem cells (OM-MSCs-exos) could alleviate SCZ-like behaviors in a murine model induced by methylazoxymethanol (MAM). STUDY DESIGN We conducted a comprehensive investigation to assess the impact of intranasally delivered OM-MSC-exos on SCZ-like behaviors in MAM-induced mice. This study encompassed behavioral assessments, neuroinflammatory markers, glial activation, synaptic protein expression, and neurogenesis within the hippocampus. STUDY RESULTS Our findings demonstrated that intranasal administration of OM-MSC-exos effectively ameliorated SCZ-like behaviors, specifically addressing social withdrawal and sensory gating deficits in the MAM-induced murine model. Furthermore, OM-MSC-exos intervention yielded a reduction in neuroinflammatory markers and a suppression of microglial activation within the hippocampus. Simultaneously, we observed an upregulation of key synaptic protein expression, including PSD95 and TH, the rate-limiting enzyme for dopamine biosynthesis. CONCLUSIONS Our study underscores the therapeutic potential of OM-MSC-exos in mitigating SCZ-like behavior. The OM-MSC-exos have the capacity to modulate glial cell activation, diminish neuroinflammation, and promote BDNF-associated synaptic plasticity and neurogenesis, thus ameliorating SCZ-like behaviors. In summary, intranasal administration of OM-MSC-exos offers a multifaceted approach to address SCZ mechanisms, promising innovative treatments for this intricate disorder.
Collapse
Affiliation(s)
- Xiao-Lin Zhong
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
- First Clinical Department, Changsha Medical University, Changsha, Hunan 410219, P.R.China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Li-Zheng He
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yue-wen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Hua Liu
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| |
Collapse
|
6
|
da Silva EMG, Fischer JSG, Souza IDLS, Andrade ACC, Souza LDCE, Andrade MKD, Carvalho PC, Souza RLR, Vital MABF, Passetti F. Proteomic Analysis of a Rat Streptozotocin Model Shows Dysregulated Biological Pathways Implicated in Alzheimer's Disease. Int J Mol Sci 2024; 25:2772. [PMID: 38474019 DOI: 10.3390/ijms25052772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's Disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory loss and cognitive impairment, affecting 35 million individuals worldwide. Intracerebroventricular (ICV) injection of low to moderate doses of streptozotocin (STZ) in adult male Wistar rats can reproduce classical physiopathological hallmarks of AD. This biological model is known as ICV-STZ. Most studies are focused on the description of behavioral and morphological aspects of the ICV-STZ model. However, knowledge regarding the molecular aspects of the ICV-STZ model is still incipient. Therefore, this work is a first attempt to provide a wide proteome description of the ICV-STZ model based on mass spectrometry (MS). To achieve that, samples from the pre-frontal cortex (PFC) and hippocampus (HPC) of the ICV-STZ model and control (wild-type) were used. Differential protein abundance, pathway, and network analysis were performed based on the protein identification and quantification of the samples. Our analysis revealed dysregulated biological pathways implicated in the early stages of late-onset Alzheimer's disease (LOAD), based on differentially abundant proteins (DAPs). Some of these DAPs had their mRNA expression further investigated through qRT-PCR. Our results shed light on the AD onset and demonstrate the ICV-STZ as a valid model for LOAD proteome description.
Collapse
Affiliation(s)
- Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, FIOCRUZ, Curitiba 81310-020, PR, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-361, RJ, Brazil
| | | | | | | | | | | | - Paulo C Carvalho
- Instituto Carlos Chagas, FIOCRUZ, Curitiba 81310-020, PR, Brazil
| | | | | | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Curitiba 81310-020, PR, Brazil
| |
Collapse
|
7
|
Xu DD, Hou ZQ, Xu YY, Liang J, Gao YJ, Zhang C, Guo F, Huang DD, Ge JF, Xia QR. Potential Role of Bmal1 in Lipopolysaccharide-Induced Depression-Like Behavior and its Associated "Inflammatory Storm". J Neuroimmune Pharmacol 2024; 19:4. [PMID: 38305948 DOI: 10.1007/s11481-024-10103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Inflammation plays an important role in the pathogenesis of depression; however, the underlying mechanisms remain unclear. Apart from the disordered circadian rhythm in animal models and patients with depression, dysfunction of clock genes has been reported to be involved with the progress of inflammation. This study aimed to investigate the role of circadian clock genes, especially brain and muscle ARNT-like 1 (Bmal1), in the linkage between inflammation and depression. Lipopolysaccharide (LPS)-challenged rats and BV2 cells were used in the present study. Four intraperitoneal LPS injections of 0.5 mg/kg were administered once every other day to the rats, and BV2 cells were challenged with LPS for 24 h at the working concentration of 1 mg/L, with or without the suppression of Bmal1 via small interfering RNA. The results showed that LPS could successfully induce depression-like behaviors and an "inflammatory storm" in rats, as indicated by the increased immobility time in the forced swimming test and the decreased saccharin preference index in the saccharin preference test, together with hyperactivity of the hypothalamic-pituitary-adrenal axis, hyperactivation of astrocyte and microglia, and increased peripheral and central abundance of tumor necrosis factor-α, interleukin 6, and C-reactive protein. Moreover, the protein expression levels of brain-derived neurotrophic factor, triggering receptor expressed on myeloid cells 1, Copine6, and Synaptotagmin1 (Syt-1) decreased in the hippocampus and hypothalamus, whereas the expression of triggering receptor expressed on myeloid cells 2 increased. Interestingly, the fluctuation of temperature and serum concentration of melatonin and corticosterone was significantly different between the groups. Furthermore, protein expression levels of the circadian locomotor output cycles kaput, cryptochrome 2, and period 2 was significantly reduced in the hippocampus of LPS-challenged rats, whereas Bmal1 expression was significantly increased in the hippocampus but decreased in the hypothalamus, where it was co-located with neurons, microglia, and astrocytes. Consistently, apart from the reduced cell viability and increased phagocytic ability, LPS-challenged BV2 cells presented a similar trend with the changed protein expression in the hippocampus of the LPS model rats. However, the pathological changes in BV2 cells induced by LPS were reversed after the suppression of Bmal1. These results indicated that LPS could induce depression-like pathological changes, and the underlying mechanism might be partly associated with the imbalanced expression of Bmal1 and its regulated dysfunction of the circadian rhythm.
Collapse
Affiliation(s)
- Dan-Dan Xu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Zhi-Qi Hou
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Ya-Yun Xu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, People's Republic of China
| | - Jun Liang
- Department of Pharmacy, Hefei Fourth People's Hospital, Anhui Mental Health Center, 316 Huangshan Road, Hefei, 230032, China
- Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Ye-Jun Gao
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Pharmacy, Hefei Fourth People's Hospital, Anhui Mental Health Center, 316 Huangshan Road, Hefei, 230032, China
- Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Chen Zhang
- School of 1, Clinic Medicine, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, People's Republic of China
| | - Fan Guo
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Dan-Dan Huang
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, 230032, Anhui, People's Republic of China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| | - Qing-Rong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Anhui Mental Health Center, 316 Huangshan Road, Hefei, 230032, China.
- Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.
| |
Collapse
|
8
|
Ansari MA, Rao MS, Al-Jarallah A. Insights into early pathogenesis of sporadic Alzheimer's disease: role of oxidative stress and loss of synaptic proteins. Front Neurosci 2024; 17:1273626. [PMID: 38260013 PMCID: PMC10800995 DOI: 10.3389/fnins.2023.1273626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Oxidative stress, induced by impaired insulin signaling in the brain contributes to cognitive loss in sporadic Alzheimer's disease (sAD). This study evaluated early hippocampal oxidative stress, pre- and post-synaptic proteins in intraperitoneal (IP) and intracerebroventricular (ICV) streptozotocin (STZ) models of impaired insulin signaling. Adult male Wistar rats were injected with STZ, IP, or ICV, and sacrificed 1-, 3-, or 6-weeks post injection. Rat's cognitive behavior was assessed using Morris water maze (MWM) tests at weeks 3 and 6. Hippocampal synaptosomal fractions were examined for oxidative stress markers and presynaptic [synapsin I, synaptophysin, growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25)] and postsynaptic [drebrin, synapse-associated protein-97 (SAP-97), postsynaptic density protein-95 (PSD-95)] proteins. IP-STZ and ICV-STZ treatment impaired rat's cognition, decreased the levels of reduced glutathione (GSH) and increased the levels of thiobarbituric acid reactive species (TBARS) in a time dependent manner. In addition, it reduced the expression of pre- and post-synaptic proteins in the hippocampus. The decline in cognition is significantly correlated with the reduction in synaptic proteins in the hippocampus. In conclusion, impaired insulin signaling in the brain is deleterious in causing early synaptosomal oxidative damage and synaptic loss that exacerbates with time and correlates with cognitive impairments. Our data implicates oxidative stress and synaptic protein loss as an early feature of sAD and provides insights into early biochemical and behavioral changes during disease progression.
Collapse
Affiliation(s)
- Mubeen A. Ansari
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | | | - Aishah Al-Jarallah
- Department of Biochemistry, College of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
9
|
Zhou S, Nao J. Nesfatin-1: A Biomarker and Potential Therapeutic Target in Neurological Disorders. Neurochem Res 2024; 49:38-51. [PMID: 37740893 DOI: 10.1007/s11064-023-04037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Nesfatin-1 is a novel adipocytokine consisting of 82 amino acids with anorexic and anti-hyperglycemic properties. Further studies of nesfatin-1 have shown it to be closely associated with neurological disorders. Changes in nesfatin-1 levels are closely linked to the onset, progression and severity of neurological disorders. Nesfatin-1 may affect the development of neurological disorders and can indicate disease evolution and prognosis, thus informing the choice of treatment options. In addition, regulation of the expression or level of nesfatin-1 can improve the level of neuroinflammation, apoptosis, oxidative damage and other indicators. It is demonstrated that nesfatin-1 is involved in neuroprotection and may be a therapeutic target for neurological disorders. In this paper, we will also discuss the role of nesfatin-1 as a biomarker in neurological diseases and its potential mechanism of action in neurological diseases, providing new ideas for the diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
10
|
Ikrin AN, Moskalenko AM, Mukhamadeev RR, de Abreu MS, Kolesnikova TO, Kalueff AV. The emerging complexity of molecular pathways implicated in mouse self-grooming behavior. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110840. [PMID: 37580009 DOI: 10.1016/j.pnpbp.2023.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Rodent self-grooming is an important complex behavior, and its deficits are translationally relevant to a wide range of neuropsychiatric disorders. Here, we analyzed a comprehensive dataset of 227 genes whose mutations are known to evoke aberrant self-grooming in mice. Using these genes, we constructed the network of their established protein-protein interactions (PPI), yielding several distinct molecular clusters related to postsynaptic density, the Wnt signaling, transcription factors, neuronal cell cycle, NOS neurotransmission, microtubule regulation, neuronal differentiation/trafficking, neurodevelopment and mitochondrial function. Utilizing further bioinformatics analyses, we also identified novel central ('hub') proteins within these clusters, whose genes may also be implicated in aberrant self-grooming and other repetitive behaviors in general. Untangling complex molecular pathways of this important behavior using in silico approaches contributes to our understanding of related neurological disorders, and may suggest novel potential targets for their pharmacological or gene therapy.
Collapse
Affiliation(s)
- Aleksey N Ikrin
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anastasia M Moskalenko
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Radmir R Mukhamadeev
- Graduate Program in Bioinformatics and Genomics, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Murilo S de Abreu
- Moscow Institute of Science and Technology, Dolgoprudny 197028, Russia.
| | - Tatiana O Kolesnikova
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Allan V Kalueff
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 194021, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia; Neuroscience Group, Ural Federal University, Ekaterinburg 620002, Russia; Laboratory of Translational Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia.
| |
Collapse
|
11
|
Xu D, Xu Y, Gao X, Yan M, Zhang C, Wu X, Xia Q, Ge J. Potential value of Interleukin-6 as a diagnostic biomarker in human MDD and the antidepressant effect of its receptor antagonist tocilizumab in lipopolysaccharide-challenged rats. Int Immunopharmacol 2023; 124:110903. [PMID: 37717319 DOI: 10.1016/j.intimp.2023.110903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Depression is a common mental disease with disastrous effect on the health and wealth globally. Focusing on the role for inflammation and immune activation in the pathogenesis of depression, many tries have been taken into effect targeting at the blockage of inflammatory cytokines, among which interleukin- 6 (IL-6) and its receptor antagonist tocilizumab attracts more attention, with inconsistent findings. Moderate to severe depressive disorder (MSDD) patients were enrolled and the serum concentrations of IL-6 and tumor necrosis factor-α (TNF-α) measured, their correlation with the Hamilton Depression Rating Scale-24 (HAMD-24) scores was analyzed, and their role in discriminating MSDD patients from the health controls were evaluated. Meanwhile, a depression rat model was established by intraperitoneal injection of LPS, and tocilizumab was administrated doing 50 mg/kg via intravenous injection. The behavioral performance was observed, the serum concentration of IL-6, TNF-α, and C-reactive protein (CRP) was measured, and the protein expression of IL-6 and TNF-α in the hippocampus were also detected. The activity of the Hypothalamic-pituitary-adrenal (HPA) axis was observed, and the protein expression levels in the hippocampus were detected via western blot. Moreover, the immunofluorescence staining (IF) technique was used to investigate the co-location of IL-6 and neuron (MAP2), astrocyte (GFAP), or microglial (IBA-1). The results showed that the serum IL-6 level was significantly increased in the MSDD patients and lipopolysaccharide (LPS)-challenged rats, with a significant correlation with the HAMD-24 scores or struggling time in the FST and corticosterone (CORT) abundance. Results of ROC analysis showed a significant diagnosis value of IL-6 in discriminating MSDD patients or depression rats from the controls in the present study. Tocilizumab could relieve the depression-like behaviors induced by LPS, together with a normal abundance of serum CORT and hypothalamic CRH expression. Moreover, tocilizumab could alleviate the "inflammatory storm" and impaired hippocampal synaptic plasticity in LPS-challenged depression rats, inhibiting the hyperactivation of astrocyte and microglia, decreasing the peripheral and central abundance of IL-6, CRP, and TNF-α, and balancing the hippocampal expression levels of synaptic plasticity-associated proteins and key molecular in Wnt/β-catenin signaling pathway. These results indicated a predictive role of IL-6 in discriminating depression from controls, and demonstrated an antidepressant effect of tocilizumab in LPS-challenged rats, targeting at the inflammatory storm and the subsequent impairments of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Dandan Xu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| | - Yayun Xu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; School of Public Health, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China.
| | - Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| | - Mengyu Yan
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China.
| | - Chen Zhang
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; School of 1st Clinic Medicine, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China.
| | - Xian Wu
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| | - Qingrong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230032, China; Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
12
|
Gao X, Sun H, Hao S, Sun H, Ge J. Melatonin protects HT-22 cells against palmitic acid-induced glucolipid metabolic dysfunction and cell injuries: Involved in the regulation of synaptic plasticity and circadian rhythms. Biochem Pharmacol 2023; 217:115846. [PMID: 37804870 DOI: 10.1016/j.bcp.2023.115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Melatonin (MLT) is ahormonal substance reported with various pharmacological activities.Based on its effects of neuroprotection and metabolic regulation, the aim of the present study is to investigate its potential effect on palmitic acid (PA)-induced cell injuries and glucolipid metabolic dysfunction and explore the possible mechanism. Briefly, HT-22 cells were challenged with PA (0.1 mM, 24 h) and treated with MLT (10-6-10-8 mol/L). Cell proliferation, lipid accumulation and glucose consumption were detected. The protein expression of key molecular involved with the function of synaptic plasticity and circadian rhythms were measured via western blotting, and the expression of Map-2, MT1A, MT1B and Bmal1 were measured via immunofluorescence staining. The results showed that MLT could alleviate the neurotoxicity induced by PA, as indicated by the increased cell proliferation, enhanced fluorescence intensity of Map-2, and decreased lipid deposition and insulin resistance. Moreover, treatment of MLT could reverse the imbalanced expression of p-Akt, p-ERK, Synapsin I, Synaptotagmin I, BDNF, MT1B, Bmal1, and Clock in PA-induced HT-22 cells. These results suggested a remarkably neuroprotective effect of MLT against PA-induced cell injury and glucolipid metabolic dysfunction, the mechanism of which might be involved in the regulation of synaptic plasticity and circadian rhythms.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
13
|
Ansari MA, Al-Jarallah A, Babiker FA. Impaired Insulin Signaling Alters Mediators of Hippocampal Synaptic Dynamics/Plasticity: A Possible Mechanism of Hyperglycemia-Induced Cognitive Impairment. Cells 2023; 12:1728. [PMID: 37443762 PMCID: PMC10340300 DOI: 10.3390/cells12131728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that affects the elderly and is characterized by progressive and irreversible neurodegeneration in the cerebral cortex [...].
Collapse
Affiliation(s)
- Mubeen A. Ansari
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Fawzi A. Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| |
Collapse
|
14
|
Gao X, Wei Y, Sun H, Hao S, Ma M, Sun H, Zang D, Qi C, Ge J. Role of Bmal1 in Type 2 Diabetes Mellitus-Related Glycolipid Metabolic Disorder and Neuropsychiatric Injury: Involved in the Regulation of Synaptic Plasticity and Circadian Rhythms. Mol Neurobiol 2023:10.1007/s12035-023-03360-5. [PMID: 37126129 DOI: 10.1007/s12035-023-03360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Increasing data suggest a crucial role of circadian rhythm in regulating metabolic and neurological diseases, and Bmal1 is regarded as a key regulator of circadian transcription. The aim of this study is to investigate the role of Bmal1 in the disruption of circadian rhythm and neuropsychiatric injuries in type 2 diabetes mellitus (T2DM). A T2DM model was induced by the combination of high-fat-diet (HFD) and streptozotocin (STZ) in vivo or HT-22 cells challenged with palmitic-acid (PA) in vitro. The glucolipid metabolism indicators, behavioral performance, and expression of synaptic plasticity proteins and circadian rhythm-related proteins were detected. These changes were also observed after interference of Bmal1 expression via overexpressed plasmid or small interfering RNAs in vitro. The results showed that HFD/STZ could induce T2DM-like glycolipid metabolic turmoil and abnormal neuropsychiatric behaviors in mice, as indicated by the increased concentrations of fasting blood-glucose (FBG), HbA1c and lipids, the impaired glucose tolerance, and the decreased preference index of novel object or novel arm in the novel object recognition test (NOR) and Y-maze test (Y-maze). Consistently, the protein expression of synaptic plasticity proteins and circadian rhythm-related proteins and the positive fluorescence intensity of MT1B and Bmal1 were decreased in the hippocampus of HFD/STZ-induced mice or PA-challenged HT-22 cells. Furthermore, overexpression of Bmal1 could improve the PA-induced lipid metabolic dysfunction and increase the decreased expressions of synaptic plasticity proteins and circadian rhythm-related proteins, and vice versa. These results suggested a crucial role of Bmal1 in T2DM-related glycolipid metabolic disorder and neuropsychiatric injury, which mechanism might be involved in the regulation of synaptic plasticity and circadian rhythms.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Mengdie Ma
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Dandan Zang
- The Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
15
|
Turkez H, Altay O, Yildirim S, Li X, Yang H, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Arif M, Yulug B, Hanoglu L, Cankaya S, Lam S, Velioglu HA, Coskun E, Idil E, Nogaylar R, Ozsimsek A, Hacimuftuoglu A, Shoaie S, Zhang C, Nielsen J, Borén J, Uhlén M, Mardinoglu A. Combined metabolic activators improve metabolic functions in the animal models of neurodegenerative diseases. Life Sci 2023; 314:121325. [PMID: 36581096 DOI: 10.1016/j.lfs.2022.121325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), are associated with metabolic abnormalities. Integrative analysis of human clinical data and animal studies have contributed to a better understanding of the molecular and cellular pathways involved in the progression of NDDs. Previously, we have reported that the combined metabolic activators (CMA), which include the precursors of nicotinamide adenine dinucleotide and glutathione can be utilized to alleviate metabolic disorders by activating mitochondrial metabolism. METHODS We first analysed the brain transcriptomics data from AD patients and controls using a brain-specific genome-scale metabolic model (GEM). Then, we investigated the effect of CMA administration in animal models of AD and PD. We evaluated pathological and immunohistochemical findings of brain and liver tissues. Moreover, PD rats were tested for locomotor activity and apomorphine-induced rotation. FINDINGS Analysis of transcriptomics data with GEM revealed that mitochondrial dysfunction is involved in the underlying molecular pathways of AD. In animal models of AD and PD, we showed significant damage in the high-fat diet groups' brain and liver tissues compared to the chow diet. The histological analyses revealed that hyperemia, degeneration and necrosis in neurons were improved by CMA administration in both AD and PD animal models. These findings were supported by immunohistochemical evidence of decreased immunoreactivity in neurons. In parallel to the improvement in the brain, we also observed dramatic metabolic improvement in the liver tissue. CMA administration also showed a beneficial effect on behavioural functions in PD rats. INTERPRETATION Overall, we showed that CMA administration significantly improved behavioural scores in parallel with the neurohistological outcomes in the AD and PD animal models and is a promising treatment for improving the metabolic parameters and brain functions in NDDs.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Serkan Yildirim
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey.
| | - Xiangyu Li
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey.
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Muhammad Arif
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Seyda Cankaya
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| | - Halil Aziz Velioglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab, Istanbul Medipol University, Istanbul, Turkey; Department of Women's and Children's Health, Karolinska Institute, Neuroimaging Lab, Stockholm, Sweden
| | - Ebru Coskun
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ezgi Idil
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Rahim Nogaylar
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey.
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Saeed Shoaie
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| | - Cheng Zhang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
16
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
17
|
Liu S, Fan M, Ma MD, Ge JF, Chen FH. Long non-coding RNAs: Potential therapeutic targets for epilepsy. Front Neurosci 2022; 16:986874. [PMID: 36278003 PMCID: PMC9582525 DOI: 10.3389/fnins.2022.986874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common and disastrous neurological disorder characterized by abnormal firing of neurons in the brain, affecting about 70 million people worldwide. Long non-coding RNAs (LncRNAs) are a class of RNAs longer than 200 nucleotides without the capacity of protein coding, but they participate in a wide variety of pathophysiological processes. Alternated abundance and diversity of LncRNAs have been found in epilepsy patients and animal or cell models, suggesting a potential role of LncRNAs in epileptogenesis. This review will introduce the structure and function of LncRNAs, summarize the role of LncRNAs in the pathogenesis of epilepsy, especially its linkage with neuroinflammation, apoptosis, and transmitter balance, which will throw light on the molecular mechanism of epileptogenesis, and accelerate the clinical implementation of LncRNAs as a potential therapeutic target for treatment of epilepsy.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- *Correspondence: Jin-Fang Ge,
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- Fei-Hu Chen,
| |
Collapse
|
18
|
Wei YD, Chen XX, Yang LJ, Gao XR, Xia QR, Qi CC, Ge JF. Resveratrol ameliorates learning and memory impairments induced by bilateral hippocampal injection of streptozotocin in mice. Neurochem Int 2022; 159:105385. [PMID: 35843421 DOI: 10.1016/j.neuint.2022.105385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
Resveratrol (RES) is a polyphenol with diverse beneficial pharmacological activities, and our previous results have demonstrated its neuroprotective potential. The purpose of this study was to investigate the therapeutic effect of RES in Alzheimer's disease (AD)-like behavioral dysfunction induced by streptozotocin (STZ) and explore it's potential mechanism of action. STZ was microinjected bilaterally into the dorsal hippocampus of C57BL/6J mice at a dose of 3 mg/kg, and RES was administered intragastrically at a dose of 25 mg/kg for 5 weeks. Neurobehavioral performance was observed, and serum concentrations of insulin and Nesfatin-1 were measured. Moreover, the protein expression of amyloid beta 1-42 (Aβ1-42), Tau, phosphorylated Tau (p-Tau) (Ser396), synaptic ras GTPase activation protein (SynGAP), postsynaptic density protein 95 (PSD95), synapsin-1, synaptogomin-1, and key molecules of the Wnt/β-catenin signaling pathway in the hippocampus and prefrontal cortex (PFC) were assessed. Finally, pathological damage to hippocampal tissue was examined by Nissl and immunofluorescence staining. The results showed that compared with the controls, bilateral hippocampal microinjections of STZ induced task-specific learning and memory impairments, as indicated by the disadvantaged performances in the novel object recognition test (NOR) and Morris water maze (MWM), but not the contextual fear conditioning test (CFC). Treatment with RES could improve these behavioral disadvantages. The serum concentrations of insulin and Nesfatin-1 in the model group were remarkably higher than those of the control group. In addition, protein expression of Aβ1-42, Tau, and p-Tau (Ser396) was increased but expression of SynGAP, PSD95, brain-derived neurotrophic factor (BDNF), and p-GSK-3β/GSK-3β were decreased in the hippocampus. Although the protein expression of BDNF and SynGAP was also markedly decreased in the PFC of the model mice, there was no significant difference among groups in the protein expression of PSD95, BDNF, synapsin-1, synaptogomin-1, and p-GSK-3β/GSK-3β. RES (25 mg/kg) reversed the enhanced insulin level, the abnormal protein expression of Aβ1-42, Tau, and p-Tau (Ser396) in the hippocampus and PFC, and the hippocampal protein expression of SynGAP, PSD95 and BDNF. In addition, RES reversed the STZ-induced decrease in the number of Nissl bodies and the increase in fluorescence intensity of IBA1 in the hippocampal CA1 region. These findings indicate that RES could ameliorate STZ-induced AD-like neuropathological injuries, the mechanism of which could be partly related to its regulation of BDNF expression and synaptic plasticity-associated proteins in the hippocampus.
Collapse
Affiliation(s)
- Ya-Dong Wei
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xing-Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Long-Jun Yang
- Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qing-Rong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China; Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Cong-Cong Qi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, And Department of Laboratory Animal Science, Fudan University, Shanghai, China.
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
19
|
Bilateral intracerebroventricular injection of streptozotocin induces AD-like behavioral impairments and neuropathological features in mice: Involved with the fundamental role of neuroinflammation. Biomed Pharmacother 2022; 153:113375. [PMID: 35834993 DOI: 10.1016/j.biopha.2022.113375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To establish an Alzheimer's disease (AD) mouse model, investigate the behavioral performance changes and intracerebral molecular changes induced by bilateral intracerebroventricular injection of streptozotocin (STZ/I.C.V), and explore the potential pathogenesis of AD. METHODS An AD mouse model was established by STZ/I.C.V. The behavioral performance was observed via the open field test (OFT), novel object recognition test (NOR), and tail suspension test (TST). The mRNA and protein expressions of interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) in the hippocampus were measured via qPCR and Western blot. The expression of β-amyloid 1-42 (Aβ1-42), phosphorylated Tau protein (p-Tau (Ser396)), Tau5, β-site amyloid precursor protein (APP) cleaving enzyme (BACE), insulin receptor substrate 1 (IRS1), brain-derived neurotrophic factor (BDNF), Copine6, synaptotagmin-1 (Syt-1), synapsin-1, phosphoinositol 3 kinase (PI3K), serine/threonine kinase (Akt), phosphorylated serine/threonine kinase (p-Akt (Ser473)), triggering receptor expressed on myeloid cells-1/2 (TREM1/2) were detected using Western blot, and the expression of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (IBA1), Aβ1-42, p-Tau(Ser396), Syt-1, BDNF were measured via immunofluorescence staining. RESULTS STZ/I.C.V induced AD-like neuropsychiatric behaviors in mice, as indicated by the impairment of learning and memory, together with the reduced spontaneous movement and exploratory behavior. The expression of BACE, Aβ1-42, p-Tau(Ser396), and TREM2 were significantly increased in the hippocampus of model mice, while the expression of IRS1, BDNF, Copine6, Syt-1, synapsin-1, PI3K, p-Akt(Ser473), and TREM1 were decreased as compared with that of the controls. Furthermore, the model mice presented a hyperactivation of astrocytes and microglia in the hippocampus, accompanied by the increased mRNA and protein expressions of IL-1β, IL-6 and TNF-α. CONCLUSION STZ/I.C.V is an effective way to induce AD mice model, with not only AD-like neuropsychiatric behaviors, but also typic AD-like neuropathological features including neurofibrillary tangles, deposit of β-amyloid (Aβ), neuroinflammation, and imbalanced synaptic plasticity.
Collapse
|
20
|
Li Q, Li X, Tian B, Chen L. Protective effect of pterostilbene in a streptozotocin-induced mouse model of Alzheimer's disease by targeting monoamine oxidase B. J Appl Toxicol 2022; 42:1777-1786. [PMID: 35665945 DOI: 10.1002/jat.4355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in elderly population. Pterostilbene (PTS) is a resveratrol analogue with neuroprotective activity. However, the biological mechanisms of PTS in AD progression are largely uncertain. An animal model of AD was established using streptozotocin (STZ)-treated C57BL/6J mice. Monoamine oxidase B (MAOB) expression was analyzed by bioinformatics analysis and detected by western blotting assay. The memory impairment was investigated by Morris water maze test. The levels of Tau hyperphosphorylation and death-related proteins were detected by western blotting analysis. The levels of amyloid β (Aβ)1-42 accumulation, oxidative stress-related markers (ROS, MDA, SOD and GSH), and inflammation-relative markers (TNF-α, IL-1β, IL-6 and p-NF-κB) were measured by ELISA. MAOB expression was increased in hippocampus of AD mice, and it was decreased by PTS. PTS attenuated STZ-induced body weight loss and memory impairment by regulating MAOB. PTS mitigated Aβ1-42 accumulation and Tau hyperphosphorylation by regulating MAOB in STZ-treated mice. PTS attenuated neuronal death by decreasing cleaved caspase-3 and Bax levels and increasing Bcl2 expression in hippocampus by regulating MAOB in STZ-treated mice. PTS weakened STZ-induced oxidative stress in hippocampus by decreasing ROS and MDA levels and increasing SOD and GSH levels by regulating MAOB. PTS protected against STZ-induced neuroinflammation in hippocampus by inhibiting TNF-α, IL-1β, IL-6 and p-NF-κB levels through regulating MAOB. In conclusion, PTS alleviates STZ-induced memory impairment, Aβ1-42 accumulation, Tau hyperphosphorylation, neuronal death, oxidative stress and inflammation by decreasing MAOB in AD mice, proving anti-AD potential of PTS.
Collapse
Affiliation(s)
- Qiushi Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xidong Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Buxian Tian
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Long Chen
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
21
|
Zhao Y, Yang Y, Wang D, Wang J, Gao W. Cerebrospinal Fluid Amino Acid Metabolite Signatures of Diabetic Cognitive Dysfunction Based on Targeted Mass Spectrometry. J Alzheimers Dis 2022; 86:1655-1665. [PMID: 35213384 DOI: 10.3233/jad-215725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Diabetic cognitive dysfunction (DCD) is one of severe diabetic complications and might develop to irreversible dementia. Early diagnosis and detection of DCD is significant for prevention and treatment. OBJECTIVE The main objective of this study was to investigate the amino acid profiles of rat with DCD in the cerebrospinal fluid (CSF) to distinguish the early specific biomarkers. METHODS In total, rats were assigned into control and model groups. Model was induced by intraperitoneal injection of streptozotocin. The Morris water maze (MWM) method was used to evaluate learning and memory in rats on the 13th week after the model established. CSF samples were collected via cisterna magna puncture at the 0th, 5th, 9th, and 13th week, and amino acids profiling of CSF samples were performed via ultra performance liquid chromatography multiple reaction monitoring mass spectrometry (UPLC-MRM-MS). The amino acid profile was processed through multivariate analysis to identify potential biomarkers, and the related metabolic pathways were analyzed by MetaboAnalyst 5.0. RESULTS Compared to the control group, the escape latency of the MWM was significantly prolonged in model group rats (p < 0.05). Different amino acid profiles were obtained between two groups. L-Alanine, L-Glutamine, L-Lysine, L-Serine, and L-Threonine were identified as potential biomarkers for DCD. These biomarkers are principally involved in glycine, serine, and threonine metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate, and glutamate metabolism, and glyoxylate and dicarboxylate metabolism. CONCLUSION There are amino acid biomarkers in the CSF of rat with DCD. The mechanism of DCD is related to those pathways, which provide help for the early diagnosis and treatment and mechanism research.
Collapse
Affiliation(s)
- Ying Zhao
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yang Yang
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Dongxue Wang
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Jie Wang
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Weiying Gao
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| |
Collapse
|
22
|
Hao Y, Meng L, Zhang Y, Chen A, Zhao Y, Lian K, Guo X, Wang X, Du Y, Wang X, Li X, Song L, Shi Y, Yin X, Gong M, Shi H. Effects of chronic triclosan exposure on social behaviors in adult mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127562. [PMID: 34736200 DOI: 10.1016/j.jhazmat.2021.127562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), a newly identified environmental endocrine disruptor (EED) in household products, has been reported to have toxic effects on animals and humans. The effects of TCS exposure on individual social behaviors and the potential underlying mechanisms are still unknown. This study investigated the behavioral effects of 42-day exposure to TCS (0, 50, 100 mg/kg) in drinking water using the open field test (OFT), social dominance test (SDT), social interaction test (SIT), and novel object recognition task (NOR). Using 16S rRNA sequencing analysis and transmission electron microscopy (TEM), we observed the effects of TCS exposure on the gut microbiota and ultrastructure of hippocampal neurons and synapses. Behavioral results showed that chronic TCS exposure reduced the social dominance of male and female mice. TCS exposure also reduced social interaction in male mice and impaired memory formation in female mice. Analysis of the gut microbiota showed that TCS exposure increased the relative abundance of the Proteobacteria and Actinobacteria phyla in female mice. Ultrastructural analysis revealed that TCS exposure induced ultrastructural damage to hippocampal neurons and synapses. These findings suggest that TCS exposure may affect social behaviors, which may be caused by altered gut microbiota and impaired plasticity of hippocampal neurons and synapses.
Collapse
Affiliation(s)
- Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Yan Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Aixin Chen
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Kaoqi Lian
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangfei Guo
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xinhao Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xi Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xuzi Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China.
| |
Collapse
|
23
|
Liu S, Fan M, Xu JX, Yang LJ, Qi CC, Xia QR, Ge JF. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J Neuroinflammation 2022; 19:35. [PMID: 35130907 PMCID: PMC8822863 DOI: 10.1186/s12974-022-02393-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognitive ability. Exosomes derived from bone-marrow mesenchymal stem cells (BMSC-exos) are extracellular vesicles that can execute the function of bone-marrow mesenchymal stem cells (BMSCs). Given the versatile therapeutic potential of BMSC and BMSC-exos, especially their neuroprotective effect, the aim of this study was to investigate the potential effect of BMSC-exos on AD-like behavioral dysfunction in mice and explore the possible molecular mechanism. METHODS BMSC-exos were extracted from the supernatant of cultured mouse BMSCs, which were isolated from the femur and tibia of adult C57BL/6 mice, purified and sorted via flow cytometry, and cultured in vitro. BMSC-exos were identified via transmission electron microscopy, and typical marker proteins of exosomes were also detected via Western blot. A sporadic AD mouse model was established by intracerebroventricular injection of streptozotocin (STZ). Six weeks later, BMSC-exos were administered via lateral ventricle injection or caudal vein injection lasting five consecutive days, and the control mice were intracerebroventricularly administered an equal volume of solvent. Behavioral performance was observed via the open field test (OFT), elevated plus maze test (EPM), novel object recognition test (NOR), Y maze test (Y-maze), and tail suspension test (TST). The mRNA and protein expression levels of IL-1β, IL-6, and TNF-α in the hippocampus were measured via quantitative polymerase chain reaction (qPCR) and Western blot, respectively. Moreover, the protein expression of Aβ1-42, BACE, IL-1β, IL-6, TNF-α, GFAP, p-Tau (Ser396), Tau5, synaptotagmin-1 (Syt-1), synapsin-1, and brain-derived neurotrophic factor (BDNF) in the hippocampus was detected using Western blot, and the expression of GFAP, IBA1, Aβ1-42 and DCX in the hippocampus was measured via immunofluorescence staining. RESULTS Lateral ventricle administration, but not caudal vein injection of BMSC-exos improved AD-like behaviors in the STZ-injected mouse model, as indicated by the increased number of rearing, increased frequency to the central area, and increased duration and distance traveled in the central area in the OFT, and improved preference index of the novel object in the NOR. Moreover, the hyperactivation of microglia and astrocytes in the hippocampus of the model mice was inhibited after treatment with BMSC-exos via lateral ventricle administration, accompanied by the reduced expression of IL-1β, IL-6, TNF-α, Aβ1-42, and p-Tau and upregulated protein expression of synapse-related proteins and BDNF. Furthermore, the results of the Pearson test showed that the preference index of the novel object in the NOR was positively correlated with the hippocampal expression of BDNF, but negatively correlated with the expression of GFAP, IBA1, and IL-1β. Apart from a positive correlation between the hippocampal expression of BDNF and Syt-1, BDNF abundance was found to be negatively correlated with markers of glial activation and the expression of the inflammatory cytokines, Aβ1-42, and p-Tau, which are characteristic neuropathological features of AD. CONCLUSIONS Lateral ventricle administration, but not caudal vein injection of BMSC-exos, can improve AD-like behavioral performance in STZ-injected mice, the mechanism of which might be involved in the regulation of glial activation and its associated neuroinflammation and BDNF-related neuropathological changes in the hippocampus.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jing-Xian Xu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Long-Jun Yang
- Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Cong-Cong Qi
- Neurodevelopmental Laboratory, Fudan University, Shanghai, China
| | - Qing-Rong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Anhui Mental Health Center, 316 Huangshan Road, Hefei, 230032, China.
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.
- Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
24
|
Zhao X, He C, Wang S, Lei Y, Niu Q. The association between blood lymphocyte NMDAR, group I mGluRs and cognitive function changes in occupationally aluminum-exposed workers and verification in rats. J Trace Elem Med Biol 2022; 69:126875. [PMID: 34673477 DOI: 10.1016/j.jtemb.2021.126875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many studies have shown that occupational aluminum (Al) exposure could affect the cognitive functions of workers and cause mild cognitive impairment (MCI). Glutamate receptors (GluRs) play an important role in learning and memory functions. METHODS 352 workers in a large Al production enterprise were investigated in this research. MMSE, CDT, DST, VFT, FOM were used to evaluate the cognitive functions of workers. Plasma Al levels as exposure indices were measured by Graphite Furnace Atomic Absorption Method (GFAAS). The expression of GluRs was measured by ELISA. Cognitive function comprehensive scores were obtained through factor analysis. Then a rat model of chronic AlCl3 exposure was established. The detection method of Al levels and protein expression were the same as mentioned-above. RESULTS Compared with the Q1 group, the DST, VFT, and comprehensive cognitive function scores of the Q4 group were lower(P < 0.05). For every 1μg/L increase in plasma Al concentration, the risk of cognitive impairment increases 1.051 times (95 %CI:1.031,1.072). Both NMDAR1 and NMDAR2A protein expression level of Q1 group were higher than those of Q2, Q3, Q4 group (all P < 0.05). The mediating effect ratio of NMDAR1 between plasma Al levels and cognitive function comprehensive scores was a1*b1/c=11.30 %, and the mediating effect ratio of NMDAR2A was |a2*b2/c|=21.77 %. Compared with control group, the escape latency of rats in the high Al dose group was longer day by day (P < 0.05). With the increase of Al dose, the relative expression of NMDAR1, NMDAR2A, NMDAR2B, GluR1 and mGluR5 in cerebral cortex and lymphocytes of rats were decreased (P < 0.05). The result of correlation analysis on NMDAR1 protein expression between brain cortex and lymphocyte showed that the correlation coefficient is r = 0.646(P < 0.05). CONCLUSION Taking together the results from both Al exposed workers and animal, there is a certain correlation between NMDAR1 protein contents of brain cortex and peripheral lymphocytes. We propose that lymphocyte NMDAR1 could be considered as a peripheral potential marker of cognitive impairment for further observation.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shanshan Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yang Lei
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
25
|
Sun HM, Yu Y, Gao XR, Wei YD, Qi CZ, Ma MD, Xu DD, Xu YY, Ge JF. Potential role of 25(OH)D insufficiency in the dysfunction of glycolipid metabolism and cognitive impairment in patients with T2DM. Front Endocrinol (Lausanne) 2022; 13:1068199. [PMID: 36619542 PMCID: PMC9822724 DOI: 10.3389/fendo.2022.1068199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To investigate the changes of plasma 25(OH)D levels in type 2 diabetes mellitus (T2DM) patients and explore its role in the dysfunction of glucose and lipid metabolism and cognition. METHODS One hundred and thirty-two T2DM patients were enrolled and the demographic and clinical data were collected. The plasma concentration of 25(OH)D was detected and the patients were divided into two groups including a Vitamin D insufficient (VDI) group and a normal VD group according to the clinical diagnostic criterial of VDI with the plasma 25(OH)D level less than 29 ng/mL. The glycolipid metabolic and routine blood biochemical indices were detected, the plasma concentrations of C-reactive protein (CRP), interleukin-6 (IL-6), soluble myeloid soluble trigger receptor 1 (sTREM1) were measured. The cognitive function was assessed using the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A). The depressive symptomatology was assessed using the Center for Epidemiological Survey Depression Scale (CES-D). Sleep quality was assessed using the Pittsburgh sleep quality index (PSQI). RESULTS There were 70 T2DM patients with VDI (70/132, 53.03%) in this study. The plasma concentrations of glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), postprandial blood glucose (PBG), IL-6, and sTREM1 were remarkably increased in T2DM patients with VDI as compared with that with the normal VD, accompanied with an elevated BRIEF-A scores. There was no significant difference between groups with regard to the indices of blood lipid, liver function, and scores in CES-D and PSQI. Moreover, results of Pearson correlation test showed that the plasma 25(OH)D levels were negatively correlated with HbA1c, FPG, PBG, CRP, IL-6, sTREM1, CES-D sum scores, and PSQI sum scores, but positively correlated with the plasma levels of Serum creatinine (Scr). Furthermore, result of Receiver Operating Characteristic (ROC) curve analysis showed a predictive role of VDI levels in discriminating T2DM patients with higher cognitive impairments, with the sensitivity and specificity being 62.12% and 62.12%, respectively. CONCLUSION VDI is harmful for T2DM patients with a significant relation with the hyperglycosemia and cognitive dysfunction.
Collapse
Affiliation(s)
- Hui-min Sun
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yue Yu
- School of Pharmacy, Anhui Medical University, Hefei, China
- Department of Pharmacy, North district of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin-ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Ya-dong Wei
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Chuan-zong Qi
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Meng-die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Dan-dan Xu
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Ya-yun Xu
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jin-fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial laboratory of inflammatory and immunity disease, Anhui Institute of Innovative Drugs, Hefei, China
- *Correspondence: Jin-fang Ge,
| |
Collapse
|
26
|
Alqudah MA, Al-Nosairy A, Alzoubi KH, Kahbour OF, Alazzam SI. Edaravone prevents memory impairment in diabetic rats: Role of oxidative stress. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
27
|
Narvaes RF, Furini CRG. Role of Wnt signaling in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 187:107558. [PMID: 34808336 DOI: 10.1016/j.nlm.2021.107558] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Ever since their discoveries, the Wnt pathways have been consistently associated with key features of cellular development, including metabolism, structure and cell fate. The three known pathways (the canonical Wnt/β-catenin and the two non-canonical Wnt/Ca++ and Wnt/JNK/PCP pathways) participate in complex networks of interaction with a wide range of regulators of cell function, such as GSK-3β, AKT, PKC and mTOR, among others. These proteins are known to be involved in the formation and maintenance of memory. Currently, studies with Wnt and memory have shown that the canonical and non-canonical pathways play key roles in different processes associated with memory. So, in this review we briefly summarize the different roles that Wnt signaling can play in neurons and in memory, as well as in Alzheimer's disease, focusing towards animal studies. We start with the molecular characterization of the family and its receptors, as well as the most commonly used drugs for pharmacological manipulations. Next, we describe its role in synaptic plasticity and memory, and how the regulations of these pathways affect crucial features of neuronal function. Furthermore, we succinctly present the current knowledge on how the Wnt pathways are implicated in Alzheimer's disease, and how studies are seeing them as a potential candidate for effective treatments. Lastly, we point toward challenges of Wnt research, and how knowledge on these pathways can lead towards a better understanding of neurobiological and pathological processes.
Collapse
Affiliation(s)
- Rodrigo F Narvaes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Latina V, Giacovazzo G, Calissano P, Atlante A, La Regina F, Malerba F, Dell’Aquila M, Stigliano E, Balzamino BO, Micera A, Coccurello R, Amadoro G. Tau Cleavage Contributes to Cognitive Dysfunction in Strepto-Zotocin-Induced Sporadic Alzheimer's Disease (sAD) Mouse Model. Int J Mol Sci 2021; 22:ijms222212158. [PMID: 34830036 PMCID: PMC8618605 DOI: 10.3390/ijms222212158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/15/2023] Open
Abstract
Tau cleavage plays a crucial role in the onset and progression of Alzheimer’s Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less than 1%, the sporadic and late-onset ones (sAD) are the most common, with ageing being an important risk factor. Intracerebroventricular (ICV) infusion of streptozotocin (STZ)—a compound used in the systemic induction of diabetes due to its ability to damage the pancreatic β cells and to induce insulin resistance—mimics in rodents several behavioral, molecular and histopathological hallmarks of sAD, including memory/learning disturbance, amyloid-β (Aβ) accumulation, tau hyperphosphorylation, oxidative stress and brain glucose hypometabolism. We have demonstrated that pathological truncation of tau at its N-terminal domain occurs into hippocampi from two well-established transgenic lines of fAD animal models, such as Tg2576 and 3xTg mice, and that it’s in vivo neutralization via intravenous (i.v.) administration of the cleavage-specific anti-tau 12A12 monoclonal antibody (mAb) is strongly neuroprotective. Here, we report the therapeutic efficacy of 12A12mAb in STZ-infused mice after 14 days (short-term immunization, STIR) and 21 days (long-term immunization regimen, LTIR) of i.v. delivery. A virtually complete recovery was detected after three weeks of 12A12mAb immunization in both novel object recognition test (NORT) and object place recognition task (OPRT). Consistently, three weeks of this immunization regimen relieved in hippocampi from ICV-STZ mice the AD-like up-regulation of amyloid precursor protein (APP), the tau hyperphosphorylation and neuroinflammation, likely due to modulation of the PI3K/AKT/GSK3-β axis and the AMP-activated protein kinase (AMPK) activities. Cerebral oxidative stress, mitochondrial impairment, synaptic and histological alterations occurring in STZ-infused mice were also strongly attenuated by 12A12mAb delivery. These results further strengthen the causal role of N-terminal tau cleavage in AD pathogenesis and indicate that its specific neutralization by non-invasive administration of 12A12mAb can be a therapeutic option for both fAD and sAD patients, as well as for those showing type 2 diabetes as a comorbidity.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Giacomo Giacovazzo
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy;
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via Amendola 122/O, 70126 Bari, Italy;
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
| | - Marco Dell’Aquila
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (M.D.); (E.S.)
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (M.D.); (E.S.)
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6I, 00184 Rome, Italy; (B.O.B.); (A.M.)
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6I, 00184 Rome, Italy; (B.O.B.); (A.M.)
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy;
- Institute for Complex System (ISC)-CNR, Via dei Taurini 19, 00185 Rome, Italy
- Correspondence: (R.C.); (G.A.)
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; (V.L.); (P.C.); (F.L.R.); (F.M.)
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: (R.C.); (G.A.)
| |
Collapse
|