1
|
Zhang Z. Resting-state functional abnormalities in ischemic stroke: a meta-analysis of fMRI studies. Brain Imaging Behav 2024:10.1007/s11682-024-00919-1. [PMID: 39245741 DOI: 10.1007/s11682-024-00919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Ischemic stroke is a leading neurological cause of severe disabilities and death in the world and has a major negative impact on patients' quality of life. However, the neural mechanism of spontaneous fluctuating neuronal activity remains unclear. This meta-analysis explored brain activity during resting state in patients with ischemic stroke including 22 studies of regional homogeneity, amplitude of low-frequency fluctuation, and fractional amplitude of low-frequency fluctuation (692 patients with ischemic stroke, 620 healthy controls, age range 35-80 years, 41% female, 175 foci). Results showed decreased regional activity in the bilateral caudate and thalamus and increased regional activity in the left superior occipital gyrus and left default mode network (precuneus/posterior cingulate cortex). Meta-analysis of the amplitude of low-frequency fluctuation studies showed that increased activity in the left inferior frontal gyrus was reduced across the progression from acute to chronic phases. These findings may indicate that disruption of the subcortical areas and default mode network could be one of the core functional abnormalities in ischemic stroke. Altered brain activity in the inferior frontal gyrus could be the imaging indicator of brain recovery/plasticity after stroke damage, which offers potential insight into developing prediction models and therapeutic strategies for ischemic stroke rehabilitation and recovery.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Neurology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
2
|
Katsurayama M, Silva LS, de Campos BM, Avelar WM, Cendes F, Yasuda CL. Disruption of Resting-State Functional Connectivity in Acute Ischemic Stroke: Comparisons Between Right and Left Hemispheric Insults. Brain Topogr 2024; 37:881-888. [PMID: 38302770 DOI: 10.1007/s10548-024-01033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/01/2024] [Indexed: 02/03/2024]
Abstract
Few resting-state functional magnetic resonance imaging (RS-fMRI) studies evaluated the impact of acute ischemic changes on cerebral functional connectivity (FC) and its relationship with functional outcomes after acute ischemic stroke (AIS), considering the side of lesions. To characterize alterations of FC of patients with AIS by analyzing 12 large-scale brain networks (NWs) with RS-fMRI. Additionally, we evaluated the impact of the side (right (RH) or left (LH) hemisphere) of insult on the disruption of brain NWs. 38 patients diagnosed with AIS (17 RH and 21 LH) who performed 3T MRI scans up to 72 h after stroke were compared to 44 healthy controls. Images were processed and analyzed with the software toolbox UF2C with SPM12. For the first level, we generated individual matrices based on the time series extraction from 70 regions of interest (ROIs) from 12 functional NWs, constructing Pearson's cross-correlation; the second-level analysis included an analysis of covariance (ANCOVA) to investigate differences between groups. The statistical significance was determined with p < 0.05, after correction for multiple comparisons with false discovery rate (FDR) correction. Overall, individuals with LH insults developed poorer clinical outcomes after six months. A widespread pattern of lower FC was observed in the presence of LH insults, while a contralateral pattern of increased FC was identified in the group with RH insults. Our findings suggest that LH stroke causes a severe and widespread pattern of reduction of brain networks' FC, presumably related to the impairment in their long-term recovery.
Collapse
Affiliation(s)
- Marilise Katsurayama
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Cidade Universitária, Campinas, SP, 13083-970, Brazil
| | - Lucas Scárdua Silva
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Cidade Universitária, Campinas, SP, 13083-970, Brazil
| | - Brunno Machado de Campos
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Cidade Universitária, Campinas, SP, 13083-970, Brazil
| | - Wagner Mauad Avelar
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Cidade Universitária, Campinas, SP, 13083-970, Brazil
| | - Fernando Cendes
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Cidade Universitária, Campinas, SP, 13083-970, Brazil
| | - Clarissa Lin Yasuda
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Cidade Universitária, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
3
|
Krueger J, Krauth R, Reichert C, Perdikis S, Vogt S, Huchtemann T, Dürschmid S, Sickert A, Lamprecht J, Huremovic A, Görtler M, Nasuto SJ, Tsai IC, Knight RT, Hinrichs H, Heinze HJ, Lindquist S, Sailer M, Millán JDR, Sweeney-Reed CM. Hebbian plasticity induced by temporally coincident BCI enhances post-stroke motor recovery. Sci Rep 2024; 14:18700. [PMID: 39134592 PMCID: PMC11319604 DOI: 10.1038/s41598-024-69037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Functional electrical stimulation (FES) can support functional restoration of a paretic limb post-stroke. Hebbian plasticity depends on temporally coinciding pre- and post-synaptic activity. A tight temporal relationship between motor cortical (MC) activity associated with attempted movement and FES-generated visuo-proprioceptive feedback is hypothesized to enhance motor recovery. Using a brain-computer interface (BCI) to classify MC spectral power in electroencephalographic (EEG) signals to trigger FES-delivery with detection of movement attempts improved motor outcomes in chronic stroke patients. We hypothesized that heightened neural plasticity earlier post-stroke would further enhance corticomuscular functional connectivity and motor recovery. We compared subcortical non-dominant hemisphere stroke patients in BCI-FES and Random-FES (FES temporally independent of MC movement attempt detection) groups. The primary outcome measure was the Fugl-Meyer Assessment, Upper Extremity (FMA-UE). We recorded high-density EEG and transcranial magnetic stimulation-induced motor evoked potentials before and after treatment. The BCI group showed greater: FMA-UE improvement; motor evoked potential amplitude; beta oscillatory power and long-range temporal correlation reduction over contralateral MC; and corticomuscular coherence with contralateral MC. These changes are consistent with enhanced post-stroke motor improvement when movement is synchronized with MC activity reflecting attempted movement.
Collapse
Affiliation(s)
- Johanna Krueger
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Richard Krauth
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | | | - Serafeim Perdikis
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Susanne Vogt
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Tessa Huchtemann
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Stefan Dürschmid
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Almut Sickert
- Neurorehabilitation Centre, MEDIAN, Magdeburg, Germany
| | - Juliane Lamprecht
- Neurorehabilitation Centre, MEDIAN, Magdeburg, Germany
- Health and Care Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Almir Huremovic
- Neurorehabilitation Centre, MEDIAN, Magdeburg, Germany
- Department of Neurology, Ingolstadt Hospital, Ingolstadt, Germany
| | - Michael Görtler
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | | | - I-Chin Tsai
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California -Berkeley, Berkeley, USA
- Department of Psychology, University of California -Berkeley, Berkeley, USA
| | - Hermann Hinrichs
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| | - Sabine Lindquist
- Department of Neurology, Pfeiffersche Stiftung, Magdeburg, Germany
| | | | - Jose Del R Millán
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, USA
- Department of Neurology, The University of Texas at Austin, Austin, USA
- Mulva Clinic for the Neurosciences, The University of Texas at Austin, Austin, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
4
|
Zeng Y, Ye Z, Zheng W, Wang J. Efficacy of Cerebellar Transcranial Magnetic Stimulation for Post-stroke Balance and Limb Motor Function Impairments: Meta-analyses of Random Controlled Trials and Resting-State fMRI Studies. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1678-1696. [PMID: 38280142 DOI: 10.1007/s12311-024-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
This study aimed to investigate the potential therapeutic effects of cerebellar transcranial magnetic stimulation (TMS) on balance and limb motor impairments in stroke patients. A meta-analysis of randomized controlled trials was conducted to assess the effects of cerebellar TMS on balance and motor impairments in stroke patients. Additionally, an activation likelihood estimation (ALE) meta-analysis was performed on resting-state functional magnetic resonance imaging (fMRI) studies to compare spontaneous neural activity differences between stroke patients and healthy controls using measures including the amplitude of low frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo). The analysis included 10 cerebellar TMS studies and 18 fMRI studies. Cerebellar TMS treatment demonstrated significant improvements in the Berg Balance Scale score (p < 0.0001) and the Fugl-Meyer Assessment lower extremity score (p < 0.0001) compared to the control group in stroke patients. Additionally, spontaneous neural activity alterations were identified in motor-related regions after stroke, including the precentral gyrus, putamen, thalamus, and paracentral lobule. Cerebellar TMS shows promise as a therapeutic intervention to enhance balance and lower limb motor function in stroke patients. It is easy for clinical application and addresses the limitations of insufficient direct stimulation depth on the leg area of the cortex. However, further research combining neuroimaging outcomes with clinical measurements is necessary to validate these findings.
Collapse
Affiliation(s)
- Yuheng Zeng
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China.
| | - Zujuan Ye
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Wanxin Zheng
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| |
Collapse
|
5
|
Warioba CS, Carroll TJ, Christoforidis G. Flow augmentation therapies preserve brain network integrity and hemodynamics in a canine permanent occlusion model. Sci Rep 2024; 14:16871. [PMID: 39043723 PMCID: PMC11266609 DOI: 10.1038/s41598-024-67361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
The acute phase of ischemic stroke presents a critical window for therapeutic intervention, where novel approaches such as hyper-acute cerebral flow augmentation offer promising avenues for neuroprotection. In this study, we investigated the effects of two such therapies, NEH (a combination of norepinephrine and hydralazine) and Sanguinate (pegylated bovine carboxyhemoglobin), on resting-state functional connectivity, global mean signal (GMS), and blood oxygen level-dependent (BOLD) time lag in a pre-clinical canine model of stroke via permanent occlusion of the middle cerebral artery (total of n = 40 IACUC-approved mongrel canines randomly split into control/natural history and two treatment groups). Utilizing group independent component analysis (ICA), we identified and examined the integrity of sensorimotor and visual networks both pre- and post-occlusion, across treatment and control groups. Our results demonstrated that while the control group exhibited significant disruptions in these networks following stroke, the treatment groups showed remarkable preservation of network integrity. Voxel-wise functional connectivity analysis revealed less pronounced alterations in the treatment groups, suggesting maintained neural connections. Notably, the treatments stabilized GMS, with only minimal reductions observed post-occlusion compared to significant decreases in the control group. Furthermore, BOLD time-lag unity plots indicated that NEH and Sanguinate maintained consistent hemodynamic response timing, as evidenced by tighter clustering around the line of unity, suggesting a potential neuroprotective effect. These findings were underscored by robust statistical analyses, including paired T-tests and Mann-Whitney U tests, which confirmed the significance of the connectivity changes observed. The correlation of BOLD time-lag variations with neuroimaging functional biomarkers highlighted the impact of stroke and the efficacy of early therapeutic interventions. Our study supports the further study of flow augmentation therapies such as NEH and Sanguinate in stroke treatment protocols and suggests flow augmentation therapies should be further explored in an effort to improve patient outcomes.
Collapse
Affiliation(s)
- Chisondi S Warioba
- Department of Radiology, The University of Chicago, Chicago, IL, 60615, USA.
| | - Timothy J Carroll
- Department of Radiology, The University of Chicago, Chicago, IL, 60615, USA
| | | |
Collapse
|
6
|
Qin C, Yang R, Huang M, Liu W, Wang Z. Spatial Variation Generation Algorithm for Motor Imagery Data Augmentation: Increasing the Density of Sample Vicinity. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3675-3686. [PMID: 37698961 DOI: 10.1109/tnsre.2023.3314679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The imbalanced development between deep learning-based model design and motor imagery (MI) data acquisition raises concerns about the potential overfitting issue-models can identify training data well but fail to generalize test data. In this study, a Spatial Variation Generation (SVG) algorithm for MI data augmentation is proposed to alleviate the overfitting issue. In essence, SVG generates MI data using variations of electrode placement and brain spatial pattern, ultimately elevating the density of the raw sample vicinity. The proposed SVG prevents models from memorizing the training data by replacing the raw samples with the proper vicinal distribution. Moreover, SVG generates a uniform distribution and stabilizes the training process of models. In comparison studies involving five deep learning-based models across eight datasets, the proposed SVG algorithm exhibited a notable improvement of 0.021 in the area under the receiver operating characteristic curve (AUC). The improvement achieved by SVG outperforms other data augmentation algorithms. Further results from the ablation study verify the effectiveness of each component of SVG. Finally, the studies in the control group with varying numbers of samples show that the SVG algorithm consistently improves the AUC, with improvements ranging from approximately 0.02 to 0.15.
Collapse
|
7
|
Chen X, Li W. Relationship between temporal dynamics of intrinsic brain activity and motor function remodeling in patients with acute BGIS. Front Neurosci 2023; 17:1154018. [PMID: 37469836 PMCID: PMC10353616 DOI: 10.3389/fnins.2023.1154018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 07/21/2023] Open
Abstract
Background patients with acute basal ganglia ischemic stroke (BGIS) show changes in local brain activity represented by the amplitude of low-frequency fluctuation (ALFF), but the time-varying characteristics of this local nerve activity are still unclear. This study aimed to investigate the abnormal time-varying local brain activity of patients with acute BGIS by using the ALFF method combined with the sliding-window approach. Methods In this study, 34 patients with acute BGIS with motor dysfunction and 44 healthy controls (HCs) were recruited. The dynamic amplitude of low-frequency fluctuation (dALFF) was employed to detect the alterations in brain activity induced by acute BGIS patients. A two-sample t-test comparison was performed to compare the dALFF value between the two groups and a Spearman correlation analysis was conducted to assess the relationship between the local brain activity abnormalities and clinical characteristics. Results Compared with HCs, the activity of neurons in the left temporal pole (TP), parahippocampal gyrus (paraHIP), middle occipital gyrus (MOG), dorsolateral superior frontal gyrus (SFGdl), medial cingulate cortex (MCC), right rectus, precuneus (PCu) and right cerebellum crus1 were significantly increased in patients with BGIS. In addition, we found that there was a negative correlation (r = -0.458, p = 0.007) between the dALFF value of the right rectus and the scores of the National Institutes of Health Stroke Scale (NIHSS), and a positive correlation (r = 0.488, 0.499, p < 0.05) with the scores of the Barthel Index scale (BI) and the Fugl Meyer motor function assessment (FMA). ROC analysis results demonstrated that the area under the curves (AUC) of the right rectus was 0.880, p<0.001. Conclusion The pattern of intrinsic brain activity variability was altered in patients with acute BGIS compared with HCs. The abnormal dALFF variability might be a potential tool to assess motor function in patients with acute BGIS and potentially inform the diagnosis of this disease.
Collapse
|
8
|
Sperti M, Arba F, Acerbi A, Busto G, Fainardi E, Sarti C. Determinants of cerebral collateral circulation in acute ischemic stroke due to large vessel occlusion. Front Neurol 2023; 14:1181001. [PMID: 37265461 PMCID: PMC10230086 DOI: 10.3389/fneur.2023.1181001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Cerebral collateral circulation has a central role in ischemic stroke pathophysiology, and it is considered to correlate with infarct size, the success of reperfusion therapies, and clinical outcomes. Our aim was to study the factors influencing the development of collaterals in patients with acute ischemic stroke eligible for endovascular treatment. Materials and methods We enrolled patients with acute ischemic stroke and large vessel occlusion of anterior circulation potentially eligible for endovascular treatment. Included patients performed multiphase CT angiography to assess collaterals that were graded by the Menon Grading Score. We investigated the associations between clinical factors and collaterals and tested independent associations with logistic (good vs. poor collaterals) and ordinal (collateral grade grouped, Menon 0-2, 3, 4-5) regression analysis adjusting for age, sex, stroke severity, and onset to CT time (OCTT). Results We included 520 patients, the mean age was 75 (±13.6) years, 215 (41%) were men, and the median (IQR) NIHSS was 17 (11-22). Good collaterals were present in 323 (62%) patients and were associated with lower NIHSS (median 16 vs. 18; p < 0.001) and left hemisphere involvement (60% vs. 45%; p < 0.001), whereas previous stroke/TIA was more frequent in patients with poor collaterals (17 vs. 26%; p = 0.014). These results were confirmed in both logistic and ordinal regression analyses where good collaterals were associated with lower NIHSS (OR = 0.94; 95% CI = 0.91-0.96; cOR = 0.95; 95% CI = 0.92-0.97, respectively) and left hemisphere stroke (OR = 2.24; 95% CI = 1.52-3.28; cOR = 2.11; 95% CI = 1.46-3.05, respectively), while previous stroke/TIA was associated with poor collaterals (OR = 0.57; 95% CI = 0.36-0.90; cOR = 0.61; 95% CI = 0.40-0.94, respectively). Vascular risk factors, demographics, and pre-stroke treatments did not influence the collateral score. Discussion The results of our study suggest that risk factors and demographics do not influence the development of collateral circles, except for a negative relation with previous ischemic events. We confirm an already reported observation of a possible protective effect of collaterals on tissue damage assuming NIHSS as its surrogate. The association between left hemispheric stroke and better collaterals deserves to be further explored. Further efforts are needed to identify the factors that favor the development of collaterals.
Collapse
Affiliation(s)
- Martina Sperti
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Francesco Arba
- Stroke Unit, Careggi University Hospital, Florence, Italy
| | - Amedeo Acerbi
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Giorgio Busto
- Neuroradiology, Careggi University Hospital, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology, Careggi University Hospital, Florence, Italy
| | - Cristina Sarti
- Department of Neurofarba, University of Florence, Florence, Italy
- Stroke Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
9
|
Hao Z, Song Y, Shi Y, Xi H, Zhang H, Zhao M, Yu J, Huang L, Li H. Altered Effective Connectivity of the Primary Motor Cortex in Transient Ischemic Attack. Neural Plast 2022; 2022:2219993. [PMID: 36437903 PMCID: PMC9699783 DOI: 10.1155/2022/2219993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Objective This study is aimed at exploring alteration in motor-related effective connectivity in individuals with transient ischemic attack (TIA). Methods A total of 48 individuals with TIA and 41 age-matched and sex-matched healthy controls (HCs) were recruited for this study. The participants were scanned using MRI, and their clinical characteristics were collected. To investigate motor-related effective connectivity differences between individuals with TIA and HCs, the bilateral primary motor cortex (M1) was used as the regions of interest (ROIs) to perform a whole-brain Granger causality analysis (GCA). Furthermore, partial correlation was used to evaluate the relationship between GCA values and the clinical characteristics of individuals with TIA. Results Compared with HCs, individuals with TIA demonstrated alterations in the effective connectivity between M1 and widely distributed brain regions involved in motor, visual, auditory, and sensory integration. In addition, GCA values were significantly correlated with high- and low-density lipoprotein cholesterols in individuals with TIA. Conclusion This study provides important evidence for the alteration of motor-related effective connectivity in TIA, which reflects the abnormal information flow between different brain regions. This could help further elucidate the pathological mechanisms of motor impairment in individuals with TIA and provide a new perspective for future early diagnosis and intervention for TIA.
Collapse
Affiliation(s)
- Zeqi Hao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Yuyu Shi
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Hongyu Xi
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Mengqi Zhao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Jiahao Yu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
10
|
Cao L, Ye L, Xie H, Zhang Y, Song W. Neural substrates in patients with visual-spatial neglect recovering from right-hemispheric stroke. Front Neurosci 2022; 16:974653. [PMID: 36061609 PMCID: PMC9434016 DOI: 10.3389/fnins.2022.974653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Visual-spatial attention disorder after stroke seriously affects recovery and quality of life in stroke patients. Previous studies have shown that some patients recovery rapidly from visual-spatial neglect (VSN), but the brain networks underlying this recovery are not well understood. Using functional magnetic resonance imaging, we aimed to identify network differences between patients who rapidly recovered from VSN and those with persistent VSN. The study included 30 patients with VSN who suffered subacute stroke. Patients were examined 2–4 weeks after stroke onset and 4 weeks after the initial assessment. At the last evaluation, patients in the persistent VSN (n = 15) and rapid recovery (n = 15) groups underwent paper-and-pencil tests. We defined the bilateral frontal eye fields, bilateral intraparietal sulcus in the dorsal attention network, and right temporoparietal junction and ventral frontal cortex areas in the ventral attention network as regions of interest (ROI) and measured whole-brain ROI-based functional connectivity (FC) and amplitude of low-frequency fluctuations (ALFF) in subacute right-hemisphere stroke patients. VSN recovery was associated with changes in the activation of multiple bilateral attentional brain regions. Specifically, persistent VSN was associated with lower FC in the right superior frontal gyrus, right inferior temporal gyrus, right medial orbitofrontal cortex, left precuneus, right inferior parietal gyrus, right medial frontal gyrus, right rectus gyrus, left superior frontal gyrus, left middle cingulate gyrus, right superior temporal pole, right postcentral gyrus, and right posterior cingulate gyrus compared to that in those with rapid recovery, whereas ALFF in the left cerebellum were decreased in patients with persistent VSN. Our results demonstrate that the DAN rather than the VAN, plays a more important role in recovery from VSN, and that the cerebellum is involved in recovery. We believe that our results supplement those of previous studies on recovery from VSN.
Collapse
Affiliation(s)
- Lei Cao
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Linlin Ye
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Linlin Ye,
| | - Huanxin Xie
- Department of Orthopedics, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Yichen Zhang
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
- Weiqun Song,
| |
Collapse
|
11
|
Li Q, Hu S, Mo Y, Chen H, Meng C, Zhan L, Li M, Quan X, Gao Y, Cheng L, Hao Z, Jia X, Liang Z. Regional homogeneity alterations in multifrequency bands in patients with basal ganglia stroke: A resting-state functional magnetic resonance imaging study. Front Aging Neurosci 2022; 14:938646. [PMID: 36034147 PMCID: PMC9403766 DOI: 10.3389/fnagi.2022.938646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe aim of this study was to investigate the spontaneous regional neural activity abnormalities in patients with acute basal ganglia ischemic stroke (BGIS) using a multifrequency bands regional homogeneity (ReHo) method and to explore whether the alteration of ReHo values was associated with clinical characteristics.MethodsIn this study, 34 patients with acute BGIS and 44 healthy controls (HCs) were recruited. All participants were examined by resting-state functional magnetic resonance imaging (rs-fMRI). The ReHo method was used to detect the alterations of spontaneous neural activities in patients with acute BGIS. A two-sample t-test comparison was performed to compare the ReHo value between the two groups, and a Pearson correlation analysis was conducted to assess the relationship between the regional neural activity abnormalities and clinical characteristics.ResultsCompared with the HCs, the patients with acute BGIS showed increased ReHo in the left caudate and subregions such as the right caudate and left putamen in conventional frequency bands. In the slow-5 frequency band, patients with BGIS showed decreased ReHo in the left medial cingulum of BGIS compared to the HCs and other subregions such as bilateral caudate and left putamen. No brain regions with ReHo alterations were found in the slow-4 frequency band. Moreover, we found that the ReHo value of left caudate was positively correlated with the NIHSS score.ConclusionOur findings revealed the alterations of ReHo in patients with acute BGIS in a specific frequency band and provided a new insight into the pathogenesis mechanism of BGIS. This study demonstrated the frequency-specific characteristics of ReHo in patients with acute BGIS, which may have a positive effect on the future neuroimaging studies.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Su Hu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Yingmin Mo
- The Cadre Ward in Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hao Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chaoguo Meng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xuemei Quan
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanyan Gao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Zeqi Hao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Stewart CE, Branyan TE, Sampath D, Sohrabji F. Sex Differences in the Long-Term Consequences of Stroke. Curr Top Behav Neurosci 2022; 62:287-308. [PMID: 35332459 DOI: 10.1007/7854_2022_311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stroke is the fifth leading cause of death and as healthcare intervention improves, the number of stroke survivors has also increased. Furthermore, there exists a subgroup of younger adults, who suffer stroke and survive. Given the overall improved survival rate, bettering our understanding of long-term stroke outcomes is critical. In this review we will explore the causes and challenges of known long-term consequences of stroke and if present, their corresponding sex differences in both old and young survivors. We have separated these long-term post-stroke consequences into three categories: mobility and muscle weakness, memory and cognitive deficits, and mental health and mood. Lastly, we discuss the potential of common preclinical stroke models to contribute to our understanding of long-term outcomes following stroke.
Collapse
Affiliation(s)
- Courtney E Stewart
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Taylor E Branyan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA.,Texas A&M Institute for Neuroscience, College Station, TX, USA
| | - Dayalan Sampath
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA. .,Texas A&M Institute for Neuroscience, College Station, TX, USA.
| |
Collapse
|