1
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
2
|
Ruiz-Ortega ED, Wilkaniec A, Adamczyk A. Liquid-liquid phase separation and conformational strains of α-Synuclein: implications for Parkinson's disease pathogenesis. Front Mol Neurosci 2024; 17:1494218. [PMID: 39507104 PMCID: PMC11537881 DOI: 10.3389/fnmol.2024.1494218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD) and other synucleinopathies are characterized by the aggregation and deposition of alpha-synuclein (α-syn) in brain cells, forming insoluble inclusions such as Lewy bodies (LBs) and Lewy neurites (LNs). The aggregation of α-syn is a complex process involving the structural conversion from its native random coil to well-defined secondary structures rich in β-sheets, forming amyloid-like fibrils. Evidence suggests that intermediate species of α-syn aggregates formed during this conversion are responsible for cell death. However, the molecular events involved in α-syn aggregation and its relationship with disease onset and progression remain not fully elucidated. Additionally, the clinical and pathological heterogeneity observed in various synucleinopathies has been highlighted. Liquid-liquid phase separation (LLPS) and condensate formation have been proposed as alternative mechanisms that could underpin α-syn pathology and contribute to the heterogeneity seen in synucleinopathies. This review focuses on the role of the cellular environment in α-syn conformational rearrangement, which may lead to pathology and the existence of different α-syn conformational strains with varying toxicity patterns. The discussion will include cellular stress, abnormal LLPS formation, and the potential role of LLPS in α-syn pathology.
Collapse
Affiliation(s)
| | | | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Kurihara M, Satoh K, Shimasaki R, Hatano K, Ohse K, Taira K, Ihara R, Higashihara M, Nishina Y, Kameyama M, Iwata A. α-synuclein seed amplification assay sensitivity may be associated with cardiac MIBG abnormality among patients with Lewy body disease. NPJ Parkinsons Dis 2024; 10:190. [PMID: 39433540 PMCID: PMC11494045 DOI: 10.1038/s41531-024-00806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Although α-synuclein seed amplification assays (α-syn SAA) are promising, its sensitivity may be affected by heterogeneity among patients with Lewy body disease (LBD). We evaluated whether α-syn SAA sensitivity is affected by patient heterogeneity, using 123I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in early drug-naïve patients. Thirty-four patients with clinically established or probable Parkinson's disease (PD) and seven with dementia with Lewy bodies (DLB) or prodromal DLB were included. While 85.2% of patients with abnormal cardiac MIBG were α-syn SAA positive, only 14.3% were positive among those with normal scans. Logistic regression analysis showed that MIBG positivity was the only significant variable associated with α-syn SAA positivity (odds ratio 74.2 [95% confidence interval 6.1-909]). Although α-syn SAA is sensitive for LBD in patients with abnormal MIBG, the sensitivity may be lower in those with normal MIBG. Further studies are necessary to evaluate the association between patient heterogeneity and α-syn SAA sensitivity.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryosuke Shimasaki
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Keiko Hatano
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kensuke Ohse
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kenichiro Taira
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ryoko Ihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yasushi Nishina
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masashi Kameyama
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
4
|
Soto C. α-Synuclein seed amplification technology for Parkinson's disease and related synucleinopathies. Trends Biotechnol 2024; 42:829-841. [PMID: 38395703 PMCID: PMC11223967 DOI: 10.1016/j.tibtech.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases (NDs) associated with cerebral accumulation of α-synuclein (αSyn) misfolded aggregates. At this time, there is no effective treatment to stop or slow down disease progression, which in part is due to the lack of an early and objective biochemical diagnosis. In the past 5 years, the seed amplification technology has emerged for highly sensitive identification of these diseases, even at the preclinical stage of the illness. Much research has been done in multiple laboratories to validate the efficacy and reproducibility of this assay. This article provides a comprehensive review of this technology, including its conceptual basis and its multiple applications for disease diagnosis, as well for understanding of the disease biology and therapeutic development.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX77030, USA.
| |
Collapse
|
5
|
Zheng Y, Li S, Yang C, Yu Z, Jiang Y, Feng T. Comparison of biospecimens for α-synuclein seed amplification assays in Parkinson's disease: A systematic review and network meta-analysis. Eur J Neurol 2023; 30:3949-3967. [PMID: 37573472 DOI: 10.1111/ene.16041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND AND PURPOSE Alpha-synuclein seed amplification assays (α-syn SAAs) are promising diagnostic methods for Parkinson's disease (PD) and other synucleinopathies. However, there is limited consensus regarding the diagnostic and differential diagnostic performance of α-syn SAAs on biofluids and peripheral tissues. METHODS A comprehensive research was performed in PubMed, Web of Science, Embase and Cochrane Library. Meta-analysis was performed using a random-effects model. A network meta-analysis based on an ANOVA model was conducted to compare the relative accuracy of α-syn SAAs with different specimens. RESULTS The pooled sensitivity and specificity of α-syn SAAs in distinguishing PD from healthy controls or non-neurodegenerative neurological controls were 0.91 (95% confidence interval [CI] 0.89-0.92) and 0.95 (95% CI 0.94-0.96) for cerebrospinal fluid (CSF); 0.91 (95% CI 0.86-0.94) and 0.92 (95% CI 0.87-0.95) for skin; 0.80 (95% CI 0.66-0.89) and 0.87 (95% CI 0.69-0.96) for submandibular gland; 0.44 (95% CI 0.30-0.59) and 0.92 (95% CI 0.79-0.98) for gastrointestinal tract; 0.79 (95% CI 0.70-0.86) and 0.88 (95% CI 0.77-0.95) for saliva; and 0.51 (95% CI 0.39-0.62) and 0.91 (95% CI 0.84-0.96) for olfactory mucosa (OM). The pooled sensitivity and specificity were 0.91 (95% CI 0.89-0.93) and 0.50 (95% CI 0.44-0.55) for CSF, 0.92 (95% CI 0.83-0.97) and 0.22 (95% CI 0.06-0.48) for skin, and 0.55 (95% CI 0.42-0.68) and 0.50 (95% CI 0.35-0.65) for OM in distinguishing PD from multiple system atrophy. The pooled sensitivity and specificity were 0.92 (95% CI 0.89-0.94) and 0.84 (95% CI 0.73-0.91) for CSF, 0.92 (95% CI 0.83-0.97) and 0.88 (95% CI 0.64-0.99) for skin and 0.63 (95% CI 0.52-0.73) and 0.86 (95% CI 0.64-0.97) for OM in distinguishing PD from progressive supranuclear palsy. The pooled sensitivity and specificity were 0.94 (95% CI 0.90-0.97) and 0.95 (95% CI 0.77-1.00) for CSF and 0.94 (95% CI 0.84-0.99) and 0.86 (95% CI 0.42-1.00) for skin in distinguishing PD from corticobasal degeneration. CONCLUSIONS α-Synuclein SAAs of CSF, skin, saliva, submandibular gland, gastrointestinal tract and OM are promising diagnostic assays for PD, with CSF and skin α-syn SAAs demonstrating higher diagnostic performance.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Ying Jiang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Wan L, Zhu S, Chen Z, Qiu R, Tang B, Jiang H. Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 2023; 12:38. [PMID: 37501056 PMCID: PMC10375766 DOI: 10.1186/s40035-023-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal progressive neurodegenerative disease. Biomarkers are urgently required for MSA to improve the diagnostic and prognostic accuracy in clinic and facilitate the development and monitoring of disease-modifying therapies. In recent years, significant research efforts have been made in exploring multidimensional biomarkers for MSA. However, currently few biomarkers are available in clinic. In this review, we systematically summarize the latest advances in multidimensional biomarkers for MSA, including biomarkers in fluids, tissues and gut microbiota as well as imaging biomarkers. Future directions for exploration of novel biomarkers and promotion of implementation in clinic are also discussed.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China.
| |
Collapse
|
7
|
Peña-Bautista C, Kumar R, Baquero M, Johansson J, Cháfer-Pericás C, Abelein A, Ferreira D. Misfolded alpha-synuclein detection by RT-QuIC in dementia with lewy bodies: a systematic review and meta-analysis. Front Mol Biosci 2023; 10:1193458. [PMID: 37266333 PMCID: PMC10229818 DOI: 10.3389/fmolb.2023.1193458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Dementia with Lewy Bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD), but the field is still lacking a specific biomarker for its core pathology: alpha synuclein (α-syn). Realtime quaking induced conversion (RT-QuIC) has recently emerged as a strong biomarker candidate to detect misfolded α-syn in DLB. However, the variability in the parameters of the technique and the heterogeneity of DLB patients make the reproducibility of the results difficult. Here, we provide an overview of the state-of-the-art research of α-syn RT-QuIC in DLB focused on: (1) the capacity of α-syn RT-QuIC to discriminate DLB from controls, Parkinson's disease (PD) and AD; (2) the capacity of α-syn RT-QuIC to identify prodromal stages of DLB; and (3) the influence of co-pathologies on α-syn RT-QuIC's performance. We also assessed the influence of different factors, such as technical conditions (e.g., temperature, pH, shaking-rest cycles), sample type, and clinical diagnosis versus autopsy confirmation. Methods: We conducted a systematic review following the PRISMA guidelines in August 2022, without any limits in publication dates. Search terms were combinations of "RT-QuIC" and "Lewy Bodies," "DLB" or "LBD". Results: Our meta-analysis shows that α-syn RT-QuIC reaches very high diagnostic performance in discriminating DLB from both controls (pooled sensitivity and specificity of 0.94 and 0.96, respectively) and AD (pooled sensitivity and specificity of 0.95 and 0.88) and is promising for prodromal phases of DLB. However, the performance of α-syn RT-QuIC to discriminate DLB from PD is currently low due to low specificity (pooled sensitivity and specificity of 0.94 and 0.11). Our analysis showed that α-syn RT-QuIC's performance is not substantially influenced by sample type or clinical diagnosis versus autopsy confirmation. Co-pathologies did not influence the performance of α-syn RT-QuIC, but the number of such studies is currently limited. We observed technical variability across published articles. However, we could not find a clear effect of technical variability on the reported results. Conclusion: There is currently enough evidence to test misfolded α-syn by RT-QuIC for clinical use. We anticipate that harmonization of protocols across centres and advances in standardization will facilitate the clinical establishment of misfolded α-syn detection by RT-QuIC.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, Avda de Fernando Abril Martorell, Valencia, Spain
| | - Rakesh Kumar
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Miguel Baquero
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, Avda de Fernando Abril Martorell, Valencia, Spain
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Consuelo Cháfer-Pericás
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, Avda de Fernando Abril Martorell, Valencia, Spain
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Zheng Y, Cai H, Zhao J, Yu Z, Feng T. Alpha-Synuclein species in oral mucosa as potential biomarkers for multiple system atrophy. Front Aging Neurosci 2022; 14:1010064. [PMID: 36304930 PMCID: PMC9592697 DOI: 10.3389/fnagi.2022.1010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background The definitive diagnosis of Multiple system atrophy (MSA) requires the evidence of abnormal deposition of α-Synuclein (α-Syn) through brain pathology which is unable to achieve in vivo. Deposition of α-Syn is not limited to the central nervous system (CNS), but also extended to peripheral tissues. Detection of pathological α-Syn deposition in extracerebral tissues also contributes to the diagnosis of MSA. We recently reported the increased expressions of α-Syn, phosphorylated α-Synuclein at Ser129 (pS129), and α-Syn aggregates in oral mucosal cells of Parkinson’s disease (PD), which serve as potential biomarkers for PD. To date, little is known about the α-Syn expression pattern in oral mucosa of MSA which is also a synucleinopathy. Here, we intend to investigate whether abnormal α-Syn deposition occurs in oral mucosal cells of MSA, and to determine whether α-Syn, pS129, and α-Syn aggregates in oral mucosa are potential biomarkers for MSA. Methods The oral mucosal cells were collected by using cytobrush from 42 MSA patients (23 MSA-P and 19 MSA-C) and 47 age-matched healthy controls (HCs). Immunofluorescence analysis was used to investigate the presence of α-Syn, pS129, and α-Syn aggregates in the oral mucosal cells. Then, the concentrations of α-Syn species in oral mucosa samples were measured using electrochemiluminescence assays. Results Immunofluorescence images indicated elevated α-Syn, pS129, and α-Syn aggregates levels in oral mucosal cells of MSA than HCs. The concentrations of three α-Syn species were significantly higher in oral mucosal cells of MSA than HCs (α-Syn, p < 0.001; pS129, p = 0.042; α-Syn aggregates, p < 0.0001). In MSA patients, the oral mucosa α-Syn levels negatively correlated with disease duration (r = −0.398, p = 0.009). The area under curve (AUC) of receiver operating characteristic (ROC) analysis using an integrative model including age, gender, α-Syn, pS129, and α-Syn aggregates for MSA diagnosis was 0.825, with 73.8% sensitivity and 78.7% specificity. Conclusion The α-Syn levels in oral mucosal cells elevated in patients with MSA, which may be promising biomarkers for MSA.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajia Zhao
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing, China
- *Correspondence: Zhenwei Yu,
| | - Tao Feng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tao Feng,
| |
Collapse
|
9
|
Tönges L, Buhmann C, Klebe S, Klucken J, Kwon EH, Müller T, Pedrosa DJ, Schröter N, Riederer P, Lingor P. Blood-based biomarker in Parkinson's disease: potential for future applications in clinical research and practice. J Neural Transm (Vienna) 2022; 129:1201-1217. [PMID: 35428925 PMCID: PMC9463345 DOI: 10.1007/s00702-022-02498-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
The clinical presentation of Parkinson's disease (PD) is both complex and heterogeneous, and its precise classification often requires an intensive work-up. The differential diagnosis, assessment of disease progression, evaluation of therapeutic responses, or identification of PD subtypes frequently remains uncertain from a clinical point of view. Various tissue- and fluid-based biomarkers are currently being investigated to improve the description of PD. From a clinician's perspective, signatures from blood that are relatively easy to obtain would have great potential for use in clinical practice if they fulfill the necessary requirements as PD biomarker. In this review article, we summarize the knowledge on blood-based PD biomarkers and present both a researcher's and a clinician's perspective on recent developments and potential future applications.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801, Bochum, Nordrhein-Westfalen, Germany.
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Jochen Klucken
- Department of Digital Medicine, University Luxembourg, LCSB, L-4367, Belval, Luxembourg
- Digital Medicine Research Group, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg, Digital Medicine Research Clinic, L-1210, Luxembourg, Luxembourg
| | - Eun Hae Kwon
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, 13088, Berlin, Germany
| | - David J Pedrosa
- Department of Neurology, Universitätsklinikum Gießen and Marburg, Marburg Site, 35043, Marburg, Germany
- Center of Mind, Brain and Behaviour (CMBB), Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Nils Schröter
- Department of Neurology and Clinical Neuroscience, University of Freiburg, 79106, Freiburg, Germany
| | - Peter Riederer
- Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, 97080, Wuerzburg, Germany
- University of Southern Denmark Odense, 5000, Odense, Denmark
| | - Paul Lingor
- School of Medicine, Klinikum Rechts Der Isar, Department of Neurology, Technical University of Munich, 81675, München, Germany
| |
Collapse
|
10
|
Tönges L, Kwon EH, Klebe S. Monogenetic Forms of Parkinson’s Disease – Bridging the Gap Between Genetics and Biomarkers. Front Aging Neurosci 2022; 14:822949. [PMID: 35317530 PMCID: PMC8934414 DOI: 10.3389/fnagi.2022.822949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The therapy of neurodegenerative diseases such as Parkinson’s disease (PD) is still limited to the treatment of symptoms and primarily aimed at compensating for dopaminergic hypofunction. Numerous disease-modifying therapies currently in the pipeline attempt to modify the underlying pathomechanisms. In recent decades, the results of molecular genetics and biomarker research have raised hopes of earlier diagnosis and new neuroprotective therapeutic approaches. As the disease-causing processes in monogenetic forms of PD are better understood than in sporadic PD, these disease subsets are likely to benefit first from disease-modifying therapies. Recent studies have suggested that disease-relevant changes found in genetically linked forms of PD (i.e., PARK-LRRK2, PARK-GBA) can also be reproduced in patients in whom no genetic cause can be found, i.e., those with sporadic PD. It can, therefore, be assumed that as soon as the first causal therapy for genetic forms of PD is approved, more patients with PD will undergo genetic testing and counseling. Regarding future neuroprotective trials in neurodegenerative diseases and objective parameters such as biomarkers with high sensitivity and specificity for the diagnosis and course of the disease are needed. These biomarkers will also serve to monitor treatment success in clinical trials. Promising examples in PD, such as alpha-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, are under investigation in blood and CSF. This paper provides an overview of the opportunities and current limitations of monogenetic diagnostic and biomarker research in PD and aims to build a bridge between current knowledge and association with PD genetics and biomarkers.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany
| | - Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
- *Correspondence: Stephan Klebe,
| |
Collapse
|