1
|
Luo D, Gao X, Zhu X, Wu J, Yang Q, Xu Y, Huang Y, He X, Li Y, Gao P. Identification of steroid-induced osteonecrosis of the femoral head biomarkers based on immunization and animal experiments. BMC Musculoskelet Disord 2024; 25:596. [PMID: 39069636 DOI: 10.1186/s12891-024-07707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of femoral head (SONFH) is a severe health risk, and this study aims to identify immune-related biomarkers and pathways associated with the disease through bioinformatics analysis and animal experiments. METHOD Using SONFH-related datasets obtained from the GEO database, we performed differential expression analysis and weighted gene co-expression network analysis (WGCNA) to extract SONFH-related genes. A protein-protein interaction (PPI) network was then constructed, and core sub-network genes were identified. Immune cell infiltration and clustering analysis of SONFH samples were performed to assess differences in immune cell populations. WGCNA analysis was used to identify module genes associated with immune cells, and hub genes were identified using machine learning. Internal and external validation along with animal experiments were conducted to confirm the differential expression of hub genes and infiltration of immune cells in SONFH. RESULTS Differential expression analysis revealed 502 DEGs. WGCNA analysis identified a blue module closely related to SONFH, containing 1928 module genes. Intersection analysis between DEGs and blue module genes resulted in 453 intersecting genes. The PPI network and MCODE module identified 15 key targets enriched in various signaling pathways. Analysis of immune cell infiltration showed statistically significant differences in CD8 + t cells, monocytes, macrophages M2 and neutrophils between SONFH and control samples. Unsupervised clustering classified SONFH samples into two clusters (C1 and C2), which also exhibited significant differences in immune cell infiltration. The hub genes (ICAM1, NR3C1, and IKBKB) were further identified using WGCNA and machine learning analysis. Based on these hub genes, a clinical prediction model was constructed and validated internally and externally. Animal experiments confirmed the upregulation of hub genes in SONFH, with an associated increase in immune cell infiltration. CONCLUSION This study identified ICAM1, NR3C1, and IKBKB as potential immune-related biomarkers involved in immune cell infiltration of CD8 + t cells, monocytes, macrophages M2, neutrophils and other immune cells in the pathogenesis of SONFH. These biomarkers act through modulation of the chemokine signaling pathway, Toll-like receptor signaling pathway, and other pathways. These findings provide valuable insights into the disease mechanism of SONFH and may aid in future drug development efforts.
Collapse
Affiliation(s)
- Dongqiang Luo
- Nanfang College Guangzhou, Guangzhou, 510970, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaolu Gao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xianqiong Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiayu Wu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qingyi Yang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Xu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuxuan Huang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaolin He
- Clifford Hospital, Guangzhou, 511496, China
| | - Yan Li
- Clifford Hospital, Guangzhou, 511496, China
| | - Pengfei Gao
- Nanfang College Guangzhou, Guangzhou, 510970, China.
| |
Collapse
|
2
|
Rahmani R, Rambarack N, Singh J, Constanti A, Ali AB. Age-Dependent Sex Differences in Perineuronal Nets in an APP Mouse Model of Alzheimer's Disease Are Brain Region-Specific. Int J Mol Sci 2023; 24:14917. [PMID: 37834366 PMCID: PMC10574007 DOI: 10.3390/ijms241914917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which disproportionately affects women. AD symptoms include progressive memory loss associated with amyloid-β (Aβ) plaques and dismantled synaptic mechanisms. Perineuronal nets (PNNs) are important components of the extracellular matrix with a critical role in synaptic stabilisation and have been shown to be influenced by microglia, which enter an activated state during AD. This study aimed to investigate whether sex differences affected the density of PNNs alongside the labelling of microglia and Aβ plaques density.We performed neurochemistry experiments using acute brain slices from both sexes of the APPNL-F/NL-F mouse model of AD, aged-matched (2-5 and 12-16 months) to wild-type mice, combined with a weighted gene co-expression network analysis (WGCNA). The lateral entorhinal cortex (LEC) and hippocampal CA1, which are vulnerable during early AD pathology, were investigated and compared to the presubiculum (PRS), a region unscathed by AD pathology. The highest density of PNNs was found in the LEC and PRS regions of aged APPNL-F/NL-F mice with a region-specific sex differences. Analysis of the CA1 region using multiplex-fluorescent images from aged APPNL-F/NL-F mice showed regions of dense Aβ plaques near clusters of CD68, indicative of activated microglia and PNNs. This was consistent with the results of WGCNA performed on normalised data on microglial cells isolated from age-matched, late-stage male and female wild-type and APP knock-in mice, which revealed one microglial module that showed differential expression associated with tissue, age, genotype, and sex, which showed enrichment for fc-receptor-mediated phagocytosis. Our data are consistent with the hypothesis that sex-related differences contribute to a disrupted interaction between PNNs and microglia in specific brain regions associated with AD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Afia B. Ali
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (R.R.); (N.R.); (J.S.); (A.C.)
| |
Collapse
|
3
|
Hu M, Ge MR, Li HX, Zhang B, Li G. Identification of DAPK1 as an autophagy-related biomarker for myotonic dystrophy type 1. Front Genet 2022; 13:1022640. [PMID: 36338967 PMCID: PMC9634726 DOI: 10.3389/fgene.2022.1022640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Myotonic dystrophy type I (DM1), a CTG repeat expansion hereditary disorder, is primarily characterized by myotonia. Several studies have reported that abnormal autophagy pathway has a close relationship with DM1. However, the underlying key regulatory molecules dictating autophagy disturbance still remains elusive. Previous studies mainly focused on finding targeted therapies for DM1, but the clinical heterogeneity of the DM1 is rarely addressed. Herein, to identify potential regulator genes related to autophagy and cross-correlation among clinical symptoms, we performed weighted gene co-expression network analysis (WGCNA) to construct the co-expression network and screened out 7 core autophagy-related genes (DAPK1, KLHL4, ERBB3, SESN3, ATF4, MEG3, and COL1A1) by overlapping within differentially expressed genes (DEG), cytoHubba, gene significance (GS) and module membership (MM) score. Meanwhile, we here analyzed autophagy-related molecular subtypes of DM1 in relation to the clinical phenotype. Our results show that three genes (DAPK1, SESN3, and MEG3) contribute to distinguish these two molecular subtypes of DM1. We then develop an analysis of RNA-seq data from six human skin fibroblasts (3 DM1, 3 healthy donors). Intriguingly, of the 7 hallmark genes obtained, DAPK1 is the only confirmed gene, and finally identified in vitro by RT-PCR. Furthermore, we assessed the DAPK1 accuracy diagnosis of DM1 by plotting a receiver operating characteristic curve (ROC) (AUC = 0.965). In this study, we first validated autophagy status of DM1 individuals exhibits a clearly heterogeneity. Our study identified and validated DAPK1 serve as a novel autophagy-related biomarker that correlate with the progression of DM1.
Collapse
Affiliation(s)
| | | | | | - Bei Zhang
- *Correspondence: Bei Zhang, ; Gang Li,
| | - Gang Li
- *Correspondence: Bei Zhang, ; Gang Li,
| |
Collapse
|
4
|
Chai K, Zhang X, Tang H, Gu H, Ye W, Wang G, Chen S, Wan F, Liang J, Shen D. The Application of Consensus Weighted Gene Co-expression Network Analysis to Comparative Transcriptome Meta-Datasets of Multiple Sclerosis in Gray and White Matter. Front Neurol 2022; 13:807349. [PMID: 35280300 PMCID: PMC8907380 DOI: 10.3389/fneur.2022.807349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination, which leads to the formation of white matter lesions (WMLs) and gray matter lesions (GMLs). Recently, a large amount of transcriptomics or proteomics research works explored MS, but few studies focused on the differences and similarities between GMLs and WMLs in transcriptomics. Furthermore, there are astonishing pathological differences between WMLs and GMLs, for example, there are differences in the type and abundance of infiltrating immune cells between WMLs and GMLs. Here, we used consensus weighted gene co-expression network analysis (WGCNA), single-sample gene set enrichment analysis (ssGSEA), and machine learning methods to identify the transcriptomic differences and similarities of the MS between GMLs and WMLs, and to find the co-expression modules with significant differences or similarities between them. Through weighted co-expression network analysis and ssGSEA analysis, CD56 bright natural killer cell was identified as the key immune infiltration factor in MS, whether in GM or WM. We also found that the co-expression networks between the two groups are quite similar (density = 0.79), and 28 differentially expressed genes (DEGs) are distributed in the midnightblue module, which is most related to CD56 bright natural killer cell in GM. Simultaneously, we also found that there are huge disparities between the modules, such as divergences between darkred module and lightyellow module, and these divergences may be relevant to the functions of the genes in the modules.
Collapse
Affiliation(s)
- Keping Chai
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
- *Correspondence: Keping Chai
| | - Xiaolin Zhang
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan, China
| | - Huitao Tang
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Huaqian Gu
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Weiping Ye
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Gangqiang Wang
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Shufang Chen
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Feng Wan
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan, China
- Feng Wan
| | - Jiawei Liang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Jiawei Liang
| | - Daojiang Shen
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
- Daojiang Shen
| |
Collapse
|
5
|
Screening of Potential Biomarkers in the Peripheral Serum for Steroid-Induced Osteonecrosis of the Femoral Head Based on WGCNA and Machine Learning Algorithms. DISEASE MARKERS 2022; 2022:2639470. [PMID: 35154510 PMCID: PMC8832155 DOI: 10.1155/2022/2639470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022]
Abstract
Background. Steroid-induced osteonecrosis of the femoral head (SONFH) has produced a substantial burden of medical and social experience. However, the current diagnosis is still limited. Thus, this study is aimed at identifying potential biomarkers in the peripheral serum of patients with SONFH. Methods. The expression profile data of SONFH (number: GSE123568) was acquired from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in SONFH were identified and used for weighted gene coexpression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the biological functions. The protein-protein interaction (PPI) network and machine learning algorithms were employed to screen for potential biomarkers. Gene set enrichment analysis (GSEA), transcription factor (TF) enrichment analysis, and competing endogenous RNA (ceRNA) network were used to determine the biological functions and regulatory mechanisms of the potential biomarkers. Results. A total of 562 DEGs, including 318 upregulated and 244 downregulated genes, were identified between SONFH and control samples, and 94 target genes were screened based on WGCNA. Moreover, biological function analysis suggested that target genes were mainly involved in erythrocyte differentiation, homeostasis and development, and myeloid cell homeostasis and development. Furthermore, GYPA, TMCC2, and BPGM were identified as potential biomarkers in the peripheral serum of patients with SONFH based on machine learning algorithms and showed good diagnostic values. GSEA revealed that GYPA, TMCC2, and BPGM were mainly involved in immune-related biological processes (BPs) and signaling pathways. Finally, we found that GYPA might be regulated by hsa-miR-3137 and that BPGM might be regulated by hsa-miR-340-3p. Conclusion. GYPA, TMCC2, and BPGM are potential biomarkers in the peripheral serum of patients with SONFH and might affect SONFH by regulating erythrocytes and immunity.
Collapse
|