1
|
Xu H, Piekarz KM, Brown JL, Bhaskaran S, Smith N, Towner RA, Van Remmen H. Neuroprotective treatment with the nitrone compound OKN-007 mitigates age-related muscle weakness in aging mice. GeroScience 2024; 46:4263-4273. [PMID: 38512579 PMCID: PMC11336152 DOI: 10.1007/s11357-024-01134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Despite the universal impact of sarcopenia on compromised health and quality of life in the elderly, promising pharmaceutical approaches that can effectively mitigate loss of muscle and function during aging have been limited. Our group and others have reported impairments in peripheral motor neurons and loss of muscle innervation as initiating factors in sarcopenia, contributing to mitochondrial dysfunction and elevated oxidative stress in muscle. We recently reported a reduction in α motor neuron loss in aging mice in response to the compound OKN-007, a proposed antioxidant and anti-inflammatory agent. In the current study, we asked whether OKN-007 treatment in wildtype male mice for 8-9 months beginning at 16 months of age can also protect muscle mass and function. At 25 months of age, we observed a reduction in the loss of whole-body lean mass, a reduced loss of innervation at the neuromuscular junction and well-preserved neuromuscular junction morphology in OKN-007 treated mice versus age matched wildtype untreated mice. The loss in muscle force generation in aging mice (~ 25%) is significantly improved with OKN-007 treatment. In contrast, OKN-007 treatment provided no protection in loss of muscle mass in aging mice. Mitochondrial function was improved by OKN-007 treatment, consistent with its potential antioxidative properties. Together, these exciting findings are the first to demonstrate that interventions through neuroprotection can be an effective therapy to counter aging-related muscle dysfunction.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Katarzyna M Piekarz
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jacob L Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Rahman FA, Baechler BL, Quadrilatero J. Key considerations for investigating and interpreting autophagy in skeletal muscle. Autophagy 2024; 20:2121-2132. [PMID: 39007805 PMCID: PMC11423691 DOI: 10.1080/15548627.2024.2373676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Skeletal muscle plays a crucial role in generating force to facilitate movement. Skeletal muscle is a heterogenous tissue composed of diverse fibers with distinct contractile and metabolic profiles. The intricate classification of skeletal muscle fibers exists on a continuum ranging from type I (slow-twitch, oxidative) to type II (fast-twitch, glycolytic). The heterogenous distribution and characteristics of fibers within and between skeletal muscles profoundly influences cellular signaling; however, this has not been broadly discussed as it relates to macroautophagy/autophagy. The growing interest in skeletal muscle autophagy research underscores the necessity of comprehending the interplay between autophagic responses among skeletal muscles and fibers with different contractile properties, metabolic profiles, and other related signaling processes. We recommend approaching the interpretation of autophagy findings with careful consideration for two key reasons: 1) the distinct behaviors and responses of different skeletal muscles or fibers to various perturbations, and 2) the potential impact of alterations in skeletal muscle fiber type or metabolic profile on observed autophagic outcomes. This review provides an overview of the autophagic profile and response in skeletal muscles/fibers of different types and metabolic profiles. Further, this review discusses autophagic findings in various conditions and diseases that may differentially affect skeletal muscle. Finally, we provide key points of consideration to better enable researchers to fine-tune the design and interpretation of skeletal muscle autophagy experiments.Abbreviation: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG4: autophagy related 4 cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CS: citrate synthase; DIA: diaphragm; EDL: extensor digitorum longus; FOXO3/FOXO3A: forkhead box O3; GAS; gastrocnemius; GP: gastrocnemius-plantaris complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MYH: myosin heavy chain; PINK1: PTEN induced kinase 1; PLANT: plantaris; PRKN: parkin RBR E3 ubiquitin protein ligase; QUAD: quadriceps; RA: rectus abdominis; RG: red gastrocnemius; RQ: red quadriceps; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; WG: white gastrocnemius; WQ: white quadriceps; WVL: white vastus lateralis; VL: vastus lateralis; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Fasih A. Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Brittany L. Baechler
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Kim J, Suh SI, Park YJ, Kang M, Chung SJ, Lee ES, Jung HN, Eo JS, Koh SB, Oh K, Kang SH. Sarcopenia is a predictor for Alzheimer's continuum and related clinical outcomes. Sci Rep 2024; 14:21074. [PMID: 39256402 PMCID: PMC11387779 DOI: 10.1038/s41598-024-62918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 09/12/2024] Open
Abstract
Low body mass index is closely related to a high risk of Alzheimer's disease (AD) and related biomarkers including amyloid-β (Aβ) deposition. However, the association between sarcopenia and Aβ-confirmed AD remains controversial. Therefore, we investigated the relationship between sarcopenia and the AD continuum. We explored sarcopenia's association with clinical implications of participants on the AD continuum. We prospectively enrolled 142 participants on the AD continuum (19 with preclinical AD, 96 with mild cognitive impairment due to AD, and 28 with AD dementia) and 58 Aβ-negative cognitively unimpaired participants. Sarcopenia, assessed using dual-energy X-ray absorptiometry and hand grip measurements, was considered a predictor. AD continuum, defined by Aβ deposition on positron emission tomography served as an outcome. Clinical severity in participants on the AD continuum assessed using hippocampal volume, Mini-Mental State Examination (MMSE), Seoul Verbal Learning Test (SVLT), and Clinical Dementia Rating Scale Sum of Boxes Scores (CDR-SOB) were also considered an outcome. Sarcopenia (odds ratio = 4.99, p = 0.004) was associated independently with the AD continuum after controlling for potential confounders. Moreover, sarcopenia was associated with poor downstream imaging markers (decreased hippocampal volume, β = - 0.206, p = 0.020) and clinical outcomes (low MMSE, β = - 1.364, p = 0.025; low SVLT, β = - 1.077, p = 0.025; and high CDR-SOB scores, β = 0.783, p = 0.022) in participants on the AD continuum. Sarcopenia was associated with the AD continuum and poor clinical outcome in individuals with AD continuum. Therefore, our results provide evidence for future studies to confirm whether proper management of sarcopenia can effective strategies are required for sarcopenia management to prevent the AD continuum and its clinical implications.
Collapse
Affiliation(s)
- Jeonghun Kim
- Korea Testing Laboratory, Bio and Medical Health Division, Seoul, Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Yu Jeong Park
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Korea
| | - Minwoong Kang
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Su Jin Chung
- Department of Neurology, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Eun Seong Lee
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hye Na Jung
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Korea
| | - Kyungmi Oh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Korea.
| | - Sung Hoon Kang
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Korea.
| |
Collapse
|
4
|
Hu Z, Tang L, Zhan Y. Cognition as mediator of pulmonary function and risk of sarcopenia among older adults. BMC Public Health 2024; 24:1347. [PMID: 38762539 PMCID: PMC11102626 DOI: 10.1186/s12889-024-18848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The relationship between lung function and sarcopenia remains ambiguous. The primary aim of this study was to investigate the potential association between lung function and sarcopenia in the older adults, as well as to examine the mediating role of cognitive function in this relationship. METHODS The participants were selected from a nationally representative population-based cohort in China. The peak expiratory flow (PEF) measurement was used to evaluate the lung function in older persons. The sarcopenia was diagnosed using the guidelines of the Asian Working Group for Sarcopenia (AWGS) in 2019. The Cox proportional hazard model was utilized to perform primary analyses of the relationship between PEF and sarcopenia. The mediating effect of cognitive function was evaluated using the counterfactual mediation method. RESULTS This cohort study included 4,011 older adults (average age, 66.6 years; 53.3% males). During a follow-up period of 3.86 years, 349 individuals were diagnosed with sarcopenia. After adjusting for potential confounders, each one-standard-deviation increase in PEF was associated with a 28% reduction in the risk of sarcopenia (hazard ratio [HR]: 0.72; 95% confidence interval [CI]: 0.63, 0.80). There was a significant mediation of cognition for the association between PEF and incident sarcopenia, and the proportion mediated was 12.2% (95% CI: 4.5%, 23.1%). CONCLUSIONS Older adults with impaired lung function are more likely to develop sarcopenia. Nevertheless, cognition can explain only a small portion of this association. Thus, other potential pathways between lung function and sarcopenia must be elucidated.
Collapse
Affiliation(s)
- Zhao Hu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
| | - Lu Tang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Alava B, Hery G, Sidhom S, Gutierrez-Monreal M, Prokop S, Esser KA, Abisambra J. Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function. AGING BRAIN 2024; 5:100110. [PMID: 38419621 PMCID: PMC10900120 DOI: 10.1016/j.nbas.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.
Collapse
Affiliation(s)
- Bryan Alava
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
| | - Gabriela Hery
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
| | - Silvana Sidhom
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | | | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
6
|
Farsani MS, Fathi M, Farsani ZH, Gourgin Karaji Z. Swimming alters some proteins of skeletal muscle tissue in rats with Alzheimer-like phenotype. Arch Gerontol Geriatr 2024; 117:105260. [PMID: 37979338 DOI: 10.1016/j.archger.2023.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES Exercise training plays a significant role in preventing the destruction of central nerve neurons and muscle atrophy. The purpose of the present study was to investigate the effect of a period of swimming training on the expression of Neural cell adhesion molecule (NCAM), Semaphorin 3A (SEMA3A), and Profilin-1 (PFN1) proteins in the gastrocnemius muscle of Alzheimer-like phenotype rats. METHODS & MATERIALS 32 Wistar males were (6 weeks of age) divided into four groups: Healthy Control (HC), Alzheimer-like phenotype's Control (AC), Healthy Training (HT), and Alzheimer-like phenotype's Training (AT). Alzheimer-like phenotypes were induced by beta-amyloid injection in the hippocampus. The training program consisted of 20 swimming sessions. Gastrocnemius muscle was removed after the intervention, and NCAM, SEMA3A, and PFN1 proteins were measured by the immunohistoflorescent method. RESULTS The results showed that SEMA3A was increased (p = 0.001), and NCAM (p = 0.001), and PFN1 (p = 0.001) were decreased in AC compared to the HC group. Also, the results showed that NCAM (p = 0.001) and Pfn1 (p = 0.002) increased in the HT group compared to HC, and the NCAM (p = 0.001) and Pfn1 (p = 0.002) in AT group compared to AC (p = 0.001) increased significantly, while SEMA3A was reduced in the HT group compared to HC (p = 0.001) and AT group compared to AC (p = 0.001) CONCLUSION: Swimming effectively improves axon regeneration and neuronal formation in motor neurons and, therefore, can be an effective intervention to prevent and control the complications of Alzheimer-like phenotype.
Collapse
Affiliation(s)
| | - Mohammad Fathi
- Dept. of Sport Sciences, Faculty of Human Sciences, Lorestan University, Khorramabad, Iran.
| | | | - Zinab Gourgin Karaji
- Dept. of Physical education, Farhanguian University of Kermanshah Province, Kermanshah, Iran
| |
Collapse
|
7
|
Alava B, Hery G, Sidhom S, Prokop S, Esser K, Abisambra J. Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567586. [PMID: 38014109 PMCID: PMC10680826 DOI: 10.1101/2023.11.17.567586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.
Collapse
Affiliation(s)
- Bryan Alava
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
| | - Gabriela Hery
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
| | - Silvana Sidhom
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
- Department of Pathology, University of Florida, Gainesville, Florida, 32610, USA
| | - Karyn Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, 32610, USA
- Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, Florida, 32601, USA
| |
Collapse
|
8
|
Wu MY, Zou WJ, Lee D, Mei L, Xiong WC. APP in the Neuromuscular Junction for the Development of Sarcopenia and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24097809. [PMID: 37175515 PMCID: PMC10178513 DOI: 10.3390/ijms24097809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Sarcopenia, an illness condition usually characterized by a loss of skeletal muscle mass and muscle strength or function, is often associated with neurodegenerative diseases, such as Alzheimer's disease (AD), a common type of dementia, leading to memory loss and other cognitive impairment. However, the underlying mechanisms for their associations and relationships are less well understood. The App, a Mendelian gene for early-onset AD, encodes amyloid precursor protein (APP), a transmembrane protein enriched at both the neuromuscular junction (NMJ) and synapses in the central nervous system (CNS). Here, in this review, we highlight APP and its family members' physiological functions and Swedish mutant APP (APPswe)'s pathological roles in muscles and NMJ. Understanding APP's pathophysiological functions in muscles and NMJ is likely to uncover insights not only into neuromuscular diseases but also AD. We summarize key findings from the burgeoning literature, which may open new avenues to investigate the link between muscle cells and brain cells in the development and progression of AD and sarcopenia.
Collapse
Affiliation(s)
- Min-Yi Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wen-Jun Zou
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Northeast Ohio VA Healthcare System, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Northeast Ohio VA Healthcare System, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Kuramoto E, Kitawaki A, Yagi T, Kono H, Matsumoto SE, Hara H, Ohyagi Y, Iwai H, Yamanaka A, Goto T. Development of a system to analyze oral frailty associated with Alzheimer's disease using a mouse model. Front Aging Neurosci 2022; 14:935033. [PMID: 35983379 PMCID: PMC9380890 DOI: 10.3389/fnagi.2022.935033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
The rapid aging of the population makes the detection and prevention of frailty increasingly important. Oral frailty has been proposed as a novel frailty phenotype and is defined as a decrease in oral function coexisting with a decline in cognitive and physical functions. Oral frailty has received particular attention in relation to Alzheimer's disease (AD). However, the pathomechanisms of oral frailty related to AD remain unknown. It is assumed that the mesencephalic trigeminal nucleus (Vmes), which controls mastication, is affected by AD pathology, and as a result, masticatory function may be impaired. To investigate this possibility, we included male 3 × Tg-AD mice and their non-transgenic counterpart (NonTg) of 3-4 months of age in the present study. Immunohistochemistry revealed amyloid-β deposition and excessive tau phosphorylation in the Vmes of 3 × Tg-AD mice. Furthermore, vesicular glutamate transporter 1-immunopositive axon varicosities, which are derived from Vmes neurons, were significantly reduced in the trigeminal motor nucleus of 3 × Tg-AD mice. To investigate whether the AD pathology observed in the Vmes affects masticatory function, we analyzed electromyography of the masseter muscle during feeding. The 3 × Tg-AD mice showed a significant delay in masticatory rhythm compared to NonTg mice. Furthermore, we developed a system to simultaneously record bite force and electromyography of masseter, and devised a new method to estimate bite force during food chewing in mice. Since the muscle activity of the masseter showed a high correlation with bite force, it could be accurately estimated from the muscle activity. The estimated bite force of 3 × Tg-AD mice eating sunflower seeds was predominantly smaller than that of NonTg mice. However, there was no difference in masseter weight or muscle fiber cross-sectional area between the two groups, suggesting that the decreased bite force and delayed mastication rhythm observed in 3 × Tg-AD mice were not due to abnormality of the masseter. In conclusion, the decreased masticatory function observed in 3 × Tg-AD mice was most likely caused by AD pathology in the Vmes. Thus, novel quantitative analyses of masticatory function using the mouse model of AD enabled a comprehensive understanding of oral frailty pathogenesis.
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ayano Kitawaki
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takakazu Yagi
- Department of Oral Health Science, Kobe Tokiwa University, Kobe, Japan
| | - Hiroshi Kono
- Department of Biomaterials Science, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shin-Ei Matsumoto
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|