1
|
Zhang W, Yi C, Song Z, Yu B, Jiang X, Guo L, Huang S, Xia T, Huang F, Yan Y, Li H, Dai Y. Reshaping the gut microbiota: Tangliping decoction and its core blood-absorbed component quercetin improve diabetic cognitive impairment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156560. [PMID: 40058319 DOI: 10.1016/j.phymed.2025.156560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cognitive decline, which can result in diabetic cognitive impairment (DCI). Recent studies have indicated that gut microbiota plays a significant role in the development of DCI. Tangliping Decoction (TLP), a traditional Chinese medicine compound, contains various active ingredients that have been shown to regulate the microecology of gut microbiota and potentially improve DCI. However, it remains unclear whether TLP can improve DCI by modulating gut microbiota, as well as which specific component is primarily responsible for these effects. PURPOSE Assess the impact of TLP on alleviating DCI and investigate the contribution of quercetin (QR), the core blood-absorbed component of TLP, in this process. and investigate the underlying mechanisms through which TLP and QR enhance DCI by modulating gut microbiota composition. STUDY DESIGN AND METHODS Initially, experiments such as morris water maze (MWM), morphological analysis, and 16S ribosomal RNA (16S rRNA) gene amplicon sequencing from DCI mice, were performed to validate the pharmacological efficacy of TLP in mitigating DCI. The results indicated that TLP possesses the capacity to modulate the composition and quantity of gut microbiota and safeguard the integrity of the gut barrier and brain barrier. Secondly, high performance liquid chromatography coupled with high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with network pharmacology methods were used to screen for blood-absorbed components, suggesting that QR may be a potential core blood-absorbed component of TLP in the treatment of DCI. Subsequently, the pharmacological efficacy of QR in ameliorating DCI was confirmed, and the characteristics of gut microbiota as well as the permeability of the gut and brain barrier, were assessed. Finally, fecal microbiota transplantation (FMT) experiments were conducted, wherein fecal matter from TLP and QR-treated mice (donor mice) was transplanted into pseudo-sterile DCI mice with antibiotic-induced depletion of gut microbiota. This approach aimed to elucidate the specific mechanisms by which TLP and QR improve DCI through the modulation of the structure, composition, and abundance of gut microbiota. RESULTS TLP and QR have the potential to enhance learning and memory capabilities in DCI mice, as well as reduce homeostasis model assessment insulin resistance (HOMA-IR) and restore homeostasis model assessment-β function (HOMA- β), leading to increased fasting insulin (FIN) levels and decreased fasting blood glucose (FBG) levels. Simultaneously, the administration of FMT from donor mice to pseudo-sterile DCI mice has been shown to alter the composition and abundance of gut microbiota, leading to amelioration of pathological damage in the colon and hippocampal tissues. Ultimately, FMT utilizing fecal suspensions from donor mice treated with TLP and QR improved cognitive function in pseudo-sterile DCI mice, restore gut microbiota dysbiosis, and maintained the integrity of the gut and brain barriers. CONCLUSION The results of this study indicate that TLP and its core component, QR, which is absorbed into the bloodstream, improve DCI through a gut microbiota-dependent mechanism, providing further evidence for gut microbiota as a therapeutic target for DCI treatment.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Song
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, Chifeng, Inner Mongolia, China
| | - Bin Yu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Chen Y, Fan Z, Luo Z, Kang X, Wan R, Li F, Lin W, Han Z, Qi B, Lin J, Sun Y, Huang J, Xu Y, Chen S. Impacts of Nutlin-3a and exercise on murine double minute 2-enriched glioma treatment. Neural Regen Res 2025; 20:1135-1152. [PMID: 38989952 PMCID: PMC11438351 DOI: 10.4103/nrr.nrr-d-23-00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/21/2023] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00029/figure1/v/2024-07-06T104127Z/r/image-tiff Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients, with evidence suggesting exercise may reduce mortality risks and aid neural regeneration. The role of the small ubiquitin-like modifier (SUMO) protein, especially post-exercise, in cancer progression, is gaining attention, as are the potential anti-cancer effects of SUMOylation. We used machine learning to create the exercise and SUMO-related gene signature (ESLRS). This signature shows how physical activity might help improve the outlook for low-grade glioma and other cancers. We demonstrated the prognostic and immunotherapeutic significance of ESLRS markers, specifically highlighting how murine double minute 2 (MDM2), a component of the ESLRS, can be targeted by nutlin-3. This underscores the intricate relationship between natural compounds such as nutlin-3 and immune regulation. Using comprehensive CRISPR screening, we validated the effects of specific ESLRS genes on low-grade glioma progression. We also revealed insights into the effectiveness of Nutlin-3a as a potent MDM2 inhibitor through molecular docking and dynamic simulation. Nutlin-3a inhibited glioma cell proliferation and activated the p53 pathway. Its efficacy decreased with MDM2 overexpression, and this was reversed by Nutlin-3a or exercise. Experiments using a low-grade glioma mouse model highlighted the effect of physical activity on oxidative stress and molecular pathway regulation. Notably, both physical exercise and Nutlin-3a administration improved physical function in mice bearing tumors derived from MDM2-overexpressing cells. These results suggest the potential for Nutlin-3a, an MDM2 inhibitor, with physical exercise as a therapeutic approach for glioma management. Our research also supports the use of natural products for therapy and sheds light on the interaction of exercise, natural products, and immune regulation in cancer treatment.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongcheng Fan
- Department of Orthopedic Surgery, Hainan Province Clinical Medical Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, China
| | - Zhiwen Luo
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Department of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renwen Wan
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangqi Li
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Beijie Qi
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiebin Huang
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shiyi Chen
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Guan H, Yang X, Yang M, Wang H. Targeting MAPK14 in microglial cells: neuroimmune implications of Panax ginseng in post-stroke inflammation. J Pharm Pharmacol 2025; 77:170-187. [PMID: 38902954 DOI: 10.1093/jpp/rgae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024]
Abstract
AIM This study investigates the molecular mechanisms through which Panax ginseng and Panax notoginseng saponin (PNS) mitigate neuroinflammatory damage and promote neural repair postischemic stroke, utilizing bioinformatics, and experimental approaches. BACKGROUND Cerebral infarction significantly contributes to disability worldwide, with chronic neuroinflammation worsening cognitive impairments and leading to neurodegenerative diseases. Addressing neuroimmune interactions is crucial for slowing disease progression and enhancing patient recovery, highlighting the need for advanced research in neuroimmune regulatory mechanisms and therapeutic strategies. OBJECTIVE To elucidate the effects of the traditional Chinese medicine components Panax ginseng and PNS on neuroinflammatory damage following ischemic stroke, focusing on the molecular pathways involved in mitigating inflammation and facilitating neural repair. METHODS The study employs single-cell sequencing and transcriptomic analysis to investigate gene expression changes associated with cerebral infarction. Gene set enrichment analysis and weighted gene co-expression network analysis are used to identify key molecular markers and core genes. Furthermore, pharmacological profiling, including functional assays, assesses the impact of Ginsenoside-Rc, a PNS derivative, on microglial cell viability, cytokine production, and reactive oxygen species (ROS) levels. RESULTS Our analysis revealed that MAPK14 is a critical mediator in the neuroinflammatory response to ischemic stroke. Ginsenoside-Rc potentially targets and modulates MAPK14 activity to suppress inflammation. Experimental validation showed that Ginsenoside-Rc treatment, combined with MAPK14 silencing, significantly alters MAPK14 expression and mitigates neuroinflammatory damage, evidenced by reduced microglial cell death, inflammatory factor secretion, and ROS production. CONCLUSION Ginsenoside-Rc's modulation of MAPK14 offers a promising therapeutic strategy for reducing neuroinflammation and potentially improving cognitive recovery post-ischemic stroke. This supports the therapeutic application of the traditional Chinese medicine Sanqi in ischemic stroke care, providing a theoretical and experimental foundation for its use. OTHERS Future work will focus on extending these findings through clinical trials to evaluate the efficacy and safety of Ginsenoside-Rc in human subjects, aiming to translate these promising preclinical results into practical therapeutic interventions for ischemic stroke recovery.
Collapse
Affiliation(s)
- Hongxu Guan
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University, Tai'an 271000, China
| | - Xiaoting Yang
- Taishan Nursing Vocational College, Tai'an 271000, China
| | - Mingfeng Yang
- Key Laboratory of Cerebral Microcirculation in Shandong First Medical University, Tai'an, Shandong 271000, China
| | - Haitao Wang
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University, Tai'an 271000, China
| |
Collapse
|
4
|
Yin Q, Yang G, Su R, Bu J, Li Y, Zhang H, Zhang Y, Zhuang P. Zi Shen Wan Fang repaired blood-brain barrier integrity in diabetic cognitive impairment mice via preventing cerebrovascular cells senescence. Chin Med 2024; 19:169. [PMID: 39696612 DOI: 10.1186/s13020-024-01041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) integrity disruption is a key pathological link of diabetes-induced cognitive impairment (DCI), but the detailed mechanism of how the diabetic environment induces BBB integrity disruption is not fully understood. Our previous study found that Zi Shen Wan Fang (ZSWF), an optimized prescription consisting of Anemarrhenae Rhizoma (Anemarrhena asphodeloides Bge.), Phellodendri Chinensis Cortex (Phellodendron chinense Schneid.) and Cistanches Herba (Cistanche deserticola Y.C.Ma) has excellent efficacy in alleviating DCI, however, whether its mechanism is related to repairing BBB integrity remains unclear. This study aims to reveal the mechanism of BBB integrity destruction in DCI mice, and to elucidate the mechanism by which ZSWF repairs BBB integrity and improves cognitive function in DCI mice. METHODS Diabetic mouse model was established by feeding a 60% high-fat diet combined with a single intraperitoneal injection of 120 mg/kg streptozotocin (STZ). DCI mice were screened with morris water maze (MWM) after 8 weeks of sustained hyperglycemic stimulation. ZSWF was administered daily at doses of 9.36 and 18.72 g/kg for 8 weeks. Cognitive function was evaluated using MWM, blood-brain-barrier (BBB) integrity was tested using immunostaining and western blot, the underlying mechanisms were explored using single-cell RNA sequencing (scRNA-seq), validation experiments were performed with immunofluorescence analysis, and the potential active ingredients of ZSWF against cerebrovascular senescence were predicted using molecular docking. Moreover, cerebral microvascular endothelial cells were cultured, and the effects of mangiferin on the expression of p21 and Vcam1 were investigated by immunofluorescence staining and RT-qPCR. RESULTS ZSWF treatment significantly ameliorated cognitive function and repaired BBB integrity in DCI mice. Using scRNA-seq, we identified 14 brain cell types. In BBB constituent cells (endothelial cells and pericytes), we found that Cdkn1a and senescence-associated secretory phenotype (SASP) genes were significantly overexpressed in DCI mice, while ZSWF intervention significantly inhibited the expression of Cdkn1a and SASP genes in cerebrovascular cells of DCI mice. Moreover, we also found that the communication between brain endothelial cells and pericytes was decreased in DCI mice, while ZSWF significantly increased the communication between them, especially the expression of PDGFRβ in pericytes. Molecular docking results showed that mangiferin, the blood component of ZSWF, had a stronger affinity with the upstream proteins of p21. In vitro experiments showed that high glucose significantly increased the expression of p21 and Vcam1 in bEnd.3 cells, while mangiferin significantly inhibited the expression of p21 and Vcam1 induced by high glucose. CONCLUSION Our study reveals that ZSWF can ameliorate cognitive function in DCI mice by repairing BBB integrity, and the specific mechanism of which may be related to preventing cerebrovascular cells senescence, and mangiferin is its key active ingredient.
Collapse
Affiliation(s)
- Qingsheng Yin
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Genhui Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Runtao Su
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Bu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Pengwei Zhuang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
5
|
Min Z, Guo Y, Ning L. Paromomycin targets HDAC1-mediated SUMOylation and IGF1R translocation in glioblastoma. Front Pharmacol 2024; 15:1490878. [PMID: 39723246 PMCID: PMC11668589 DOI: 10.3389/fphar.2024.1490878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Objective This study investigates the effects of Paromomycin on SUMOylation-related pathways in glioblastoma (GBM), specifically targeting HDAC1 inhibition. Methods Using TCGA and GTEx datasets, we identified SUMOylation-related genes associated with GBM prognosis. Molecular docking analysis suggested Paromomycin as a potential HDAC1 inhibitor. In vitro assays on U-251MG GBM cells were performed to assess Paromomycin's effects on cell viability, SUMOylation gene expression, and IGF1R translocation using CCK8 assays, qRT-PCR, and immunofluorescence. Results Paromomycin treatment led to a dose-dependent reduction in GBM cell viability, colony formation, and migration. It modulated SUMO1 expression and decreased IGF1R nuclear translocation, an effect reversible by the HDAC1 inhibitor Trochostatin A (TSA), suggesting Paromomycin's involvement in SUMO1-regulated pathways. Conclusion This study highlights Paromomycin's potential as a therapeutic agent for GBM by targeting HDAC1-mediated SUMOylation pathways and influencing IGF1R translocation, warranting further investigation for its clinical application.
Collapse
|
6
|
Shi Q, Ying H, Weng W. Targeting exercise-related genes and placental growth factor for therapeutic development in head and neck squamous cell carcinoma. Front Pharmacol 2024; 15:1476076. [PMID: 39431157 PMCID: PMC11486741 DOI: 10.3389/fphar.2024.1476076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Background Human cancers, including head and neck squamous cell carcinoma (HNSCC), are complex and heterogeneous diseases driven by uncontrolled cell growth and proliferation. Post-translational modifications (PTMs) of proteins play a crucial role in cancer progression, making them a promising target for pharmacological intervention. This study aims to identify key exercise-related genes with prognostic value in HNSCC through comprehensive bioinformatics analysis, with a particular focus on the therapeutic potential of placental growth factor (PIGF). Methods Transcriptome data for HNSCC were obtained from The Cancer Genome Atlas (TCGA) database. Differently expressed genes (DEGs) were identified and analyzed for their prognostic significance. Exercise-related gene sets were retrieved from the Gene Set Enrichment Analysis (GSEA) database. Functional enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA, were conducted. The biological functions and clinical implications of key genes were further explored through single-gene expression analysis, immune infiltration analysis, and in vitro cellular experiments. Results The study identified exercise-related genes associated with survival prognosis in HNSCC. GO and KEGG pathway analyses highlighted the biological functions of these genes, and Kaplan-Meier survival curves confirmed their prognostic value. PIGF expression analysis using TCGA data showed its diagnostic potential, with higher expression linked to advanced tumor stages. Single-cell sequencing revealed PIGF's role in the tumor microenvironment. In vitro experiments demonstrated that PIGF plays a pivotal role in enhancing cell proliferation and colony formation in HNSCC, with PIGF knockdown significantly impairing these functions, highlighting its importance in tumor growth regulation. Additionally, PIGF's predictive performance in drug sensitivity across cancer datasets suggests its potential as a pharmacological target, offering opportunities to modulate the immune microenvironment and improve therapeutic outcomes in cancer treatment. Conclusion This study provides new insights into the molecular mechanisms underlying HNSCC and identifies exercise-related genes, particularly PIGF, as promising biomarkers for clinical treatment and personalized medicine. By focusing on PTMs and their role in cancer progression, our findings suggest that targeting PIGF may offer innovative therapeutic strategies.
Collapse
|
7
|
Li Y, Wang Z, Kong M, Yong Y, Yang X, Liu C. The role of GZMA as a target of cysteine and biomarker in Alzheimer's disease, pelvic organ prolapse, and tumor progression. Front Pharmacol 2024; 15:1447605. [PMID: 39228516 PMCID: PMC11368878 DOI: 10.3389/fphar.2024.1447605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Objective: This study aims to investigate how changes in peripheral blood metabolites in Alzheimer's Disease (AD) patients affect the development of Pelvic Organ Prolapse (POP) using a multi-omics approach. We specifically explore the interactions of signaling pathways, gene expression, and protein-metabolite interactions, with a focus on GZMA and cysteine in age-related diseases. Methods: This study utilized multi-omics analysis, including metabolomics and transcriptomics, to evaluate the perturbations in peripheral blood metabolites and their effect on POP in AD patients. Additionally, a comprehensive pan-cancer and immune infiltration analysis was performed on the core targets of AD combined with POP, exploring their potential roles in tumor progression and elucidating their pharmacological relevance to solid tumors. Results: We identified 47 differential metabolites linked to 9 significant signaling pathways, such as unsaturated fatty acid biosynthesis and amino acid metabolism. A thorough gene expression analysis revealed numerous differentially expressed genes (DEGs), with Gene Set Enrichment Analysis (GSEA) showing significant changes in gene profiles of AD and POP. Network topology analysis highlighted central nodes in the AD-POP co-expressed genes network. Functional analyses indicated involvement in critical biological processes and pathways. Molecular docking studies showed strong interactions between cysteine and proteins PTGS2 and GZMA, and molecular dynamics simulations confirmed the stability of these complexes. In vitro validation demonstrated that cysteine reduced ROS levels and protected cell viability. GZMA was widely expressed in various cancers, associated with immune cells, and correlated with patient survival prognosis. Conclusion: Multi-omics analysis revealed the role of peripheral blood metabolites in the molecular dynamics of AD and their interactions with POP. This study identified potential biomarkers and therapeutic targets, emphasizing the effectiveness of integrative approaches in treating AD and POP concurrently. The findings highlight the need for in-depth research on novel targets and biomarkers to advance therapeutic strategies.
Collapse
Affiliation(s)
- Yan Li
- Department of Gynecology and Obstetrics, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhuo Wang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Min Kong
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yong
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Yang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Abbey CA, Duran CL, Chen Z, Chen Y, Roy S, Coffell A, Sveeggen TM, Chakraborty S, Wells GB, Chang J, Bayless KJ. Identification of New Markers of Angiogenic Sprouting Using Transcriptomics: New Role for RND3. Arterioscler Thromb Vasc Biol 2024; 44:e145-e167. [PMID: 38482696 PMCID: PMC11043006 DOI: 10.1161/atvbaha.123.320599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.
Collapse
Affiliation(s)
- Colette A. Abbey
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Camille L. Duran
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Yanping Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Sukanya Roy
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Ashley Coffell
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Timothy M. Sveeggen
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Sanjukta Chakraborty
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Gregg B. Wells
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, TX
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Kayla J. Bayless
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| |
Collapse
|
9
|
Zeylan M, Senyuz S, Picón-Pagès P, García-Elías A, Tajes M, Muñoz FJ, Oliva B, Garcia-Ojalvo J, Barbu E, Vicente R, Nattel S, Ois A, Puig-Pijoan A, Keskin O, Gursoy A. Shared Proteins and Pathways of Cardiovascular and Cognitive Diseases: Relation to Vascular Cognitive Impairment. J Proteome Res 2024; 23:560-573. [PMID: 38252700 PMCID: PMC10846560 DOI: 10.1021/acs.jproteome.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
One of the primary goals of systems medicine is the detection of putative proteins and pathways involved in disease progression and pathological phenotypes. Vascular cognitive impairment (VCI) is a heterogeneous condition manifesting as cognitive impairment resulting from vascular factors. The precise mechanisms underlying this relationship remain unclear, which poses challenges for experimental research. Here, we applied computational approaches like systems biology to unveil and select relevant proteins and pathways related to VCI by studying the crosstalk between cardiovascular and cognitive diseases. In addition, we specifically included signals related to oxidative stress, a common etiologic factor tightly linked to aging, a major determinant of VCI. Our results show that pathways associated with oxidative stress are quite relevant, as most of the prioritized vascular cognitive genes and proteins were enriched in these pathways. Our analysis provided a short list of proteins that could be contributing to VCI: DOLK, TSC1, ATP1A1, MAPK14, YWHAZ, CREB3, HSPB1, PRDX6, and LMNA. Moreover, our experimental results suggest a high implication of glycative stress, generating oxidative processes and post-translational protein modifications through advanced glycation end-products (AGEs). We propose that these products interact with their specific receptors (RAGE) and Notch signaling to contribute to the etiology of VCI.
Collapse
Affiliation(s)
- Melisa
E. Zeylan
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Simge Senyuz
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Pol Picón-Pagès
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Anna García-Elías
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Marta Tajes
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Francisco J. Muñoz
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Baldomero Oliva
- Laboratory
of Structural Bioinformatics (GRIB), Department of Medicine and Life
Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Jordi Garcia-Ojalvo
- Laboratory
of Dynamical Systems Biology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Eduard Barbu
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Raul Vicente
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Stanley Nattel
- Department
of Medicine and Research Center, Montreal Heart Institute and Université
de Montréal; Institute of Pharmacology, West German Heart and
Vascular Center, University Duisburg-Essen,
Germany; IHU LIRYC and Fondation Bordeaux Université, Bordeaux 33000, France
| | - Angel Ois
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Albert Puig-Pijoan
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ozlem Keskin
- Department
of Chemical and Biological Engineering, Koç University, Istanbul 34450, Türkiye
| | - Attila Gursoy
- Department
of Computer Engineering, Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
10
|
Xu Q, Zhang X, Ge S, Xu C, Lv Y, Shuai Z. Triptoquinone A and B exercise a therapeutic effect in systemic lupus erythematosus by regulating NLRC3. PeerJ 2023; 11:e15395. [PMID: 37312878 PMCID: PMC10259444 DOI: 10.7717/peerj.15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/20/2023] [Indexed: 06/15/2023] Open
Abstract
The autoimmune disorder systemic lupus erythematosus (SLE) is multifaceted, with limited therapeutic alternatives and detrimental side effects, particularly on bones and joints. This research endeavors to examine the curative potential and underlying mechanisms of in addressing SLE-associated bone and joint complications. Triptoquinone A and triptoquinone B, constituents of Tripterygium wilfordii polyglycoside tablets (TGTs), exhibit antioxidant and anti-inflammatory attributes; nonetheless, its function in SLE therapy remains elusive. This investigation delves into the role of oxidative stress in systemic lupus erythematosus (SLE) and probes the prospective remedial effects of triptoquinone A and triptoquinone B on inflammation and cartilage deterioration in SLE-affected joints. Employing bioinformatics analyses, differentially expressed genes (DEGs) and protein-protein interactions were discerned in SLE, rheumatoid arthritis (RA), and osteoarthritis (OA) datasets. Enrichment analyses unveiled shared genes implicated in immune system regulation and toll-like receptor signaling pathways, among others. Subsequent examination of triptoquinone A and triptoquinone B revealed their capacity to diminish NLRC3 expression in chondrocytes, resulting in decreased pro-inflammatory cytokine levels and cartilage degradation enzyme expression. Suppression of NLRC3 augmented the protective effects of triptoquinone A and B, implying that targeting NLRC3 may constitute a potential therapeutic strategy for inflammation and cartilage degeneration-associated conditions in SLE patients. Our discoveries indicate that triptoquinone A and triptoquinone B may impede SLE progression via the NLRC3 axis, offering potential benefits for SLE-affected bone and joint health.
Collapse
Affiliation(s)
- Qinyao Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangzhi Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shangqing Ge
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang Xu
- Department of Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanfan Lv
- Department of Internal Medicine, School Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Xu Y, Gomez-Pinedo U, Liu J, Hong D, Xu J. Editorial: Current advances in genetic presentations of dementia and aging, volume II. Front Aging Neurosci 2023; 15:1202532. [PMID: 37323143 PMCID: PMC10264766 DOI: 10.3389/fnagi.2023.1202532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Ulises Gomez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Pan J, Tang J, Gai J, Jin Y, Tang B, Fan X. Exploring the mechanism of Ginkgo biloba L. leaves in the treatment of vascular dementia based on network pharmacology, molecular docking, and molecular dynamics simulation. Medicine (Baltimore) 2023; 102:e33877. [PMID: 37233418 PMCID: PMC10219709 DOI: 10.1097/md.0000000000033877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Ginkgo biloba L. leaves (GBLs) play a substantial role in the treatment of vascular dementia (VD); however, the underlying mechanisms of action are unclear. OBJECTIVE This study was conducted to investigate the mechanisms of action of GBLs in the treatment of VD through network pharmacology, molecular docking, and molecular dynamics simulations. METHODS The active ingredients and related targets of GBLs were screened using the traditional Chinese medicine systems pharmacology, Swiss Target Prediction and GeneCards databases, and the VD-related targets were screened using the OMIM, DrugBank, GeneCards, and DisGeNET databases, and the potential targets were identified using a Venn diagram. We used Cytoscape 3.8.0 software and the STRING platform to construct traditional Chinese medicine-active ingredient-potential target and protein-protein interaction networks, respectively. After gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of potential targets using the DAVID platform, the binding affinity between key active ingredients and targets was analyzed by molecular docking, and finally, the top 3 proteins-ligand pairs with the best binding were simulated by molecular dynamics to verify the molecular docking results. RESULTS A total of 27 active ingredients of GBLs were screened and 274 potential targets involved in the treatment of VD were identified. Quercetin, luteolin, kaempferol, and ginkgolide B were the core ingredients for treatment, and AKT1, TNF, IL6, VEGFA, IL1B, TP53, CASP3, SRC, EGFR, JUN, and EGFR were the main targets of action. The main biological processes involved apoptosis, inflammatory response, cell migration, lipopolysaccharide response, hypoxia response, and aging. PI3K/Akt appeared to be a key signaling pathway for GBLs in the treatment of VD. Molecular docking displayed strong binding affinity between the active ingredients and the targets. Molecular dynamics simulation results further verified the stability of their interactions. CONCLUSION SUBSECTIONS This study revealed the potential molecular mechanisms involved in the treatment of VD by GBLs using multi-ingredient, multi-target, and multi-pathway interactions, providing a theoretical basis for the clinical treatment and lead drug development of VD.
Collapse
Affiliation(s)
- Jienuo Pan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiqin Tang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialin Gai
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilan Jin
- School of International Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingshun Tang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohua Fan
- Department of Rehabilitation Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Fan K, Dong Y, Li T, Li Y. Cuproptosis-associated CDKN2A is targeted by plicamycin to regulate the microenvironment in patients with head and neck squamous cell carcinoma. Front Genet 2023; 13:1036408. [PMID: 36699463 PMCID: PMC9868476 DOI: 10.3389/fgene.2022.1036408] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common malignancy of the head and neck, has an overall 5-year survival rate of <50%. Genes associated with cuproptosis, a newly identified copper-dependent form of cell death, are aberrantly expressed in various tumours. However, their role in HNSCC remains unknown. In this study, bioinformatic analysis revealed that the cuproptosis-related gene CDKN2A was correlated with the malignant behaviour of HNSCC. Kaplan-Meier (KM) curves showed that patients with high CDKN2A expression had a better prognosis. Multiomic analysis revealed that CDKN2A may be associated with cell cycle and immune cell infiltration in the tumour microenvironment and is important for maintaining systemic homeostasis in the body. Furthermore, molecular docking and molecular dynamics simulations suggested strong binding between plicamycin and CDKN2A. And plicamycin inhibits the progression of HNSCC in cellular assays. In conclusion, this study elucidated a potential mechanism of action of the cuproptosis-associated gene CDKN2A in HNSCC and revealed that plicamycin targets CDKN2A to improve the prognosis of patients.
Collapse
|
14
|
Wang X, Kong F, Lin Z. Cromolyn prevents cerebral vasospasm and dementia by targeting WDR43. Front Aging Neurosci 2023; 15:1132733. [PMID: 37122373 PMCID: PMC10133528 DOI: 10.3389/fnagi.2023.1132733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background Cerebral vasospasm (CV) can cause inflammation and damage to neuronal cells in the elderly, leading to dementia. Purpose This study aimed to investigate the genetic mechanisms underlying dementia caused by CV in the elderly, identify preventive and therapeutic drugs, and evaluate their efficacy in treating neurodegenerative diseases. Methods Genes associated with subarachnoid hemorrhage and CV were acquired and screened for differentially expressed miRNAs (DEmiRNAs) associated with aneurysm rupture. A regulatory network of DEmiRNAs and mRNAs was constructed, and virtual screening was performed to evaluate possible binding patterns between Food and Drug Administration (FDA)-approved drugs and core proteins. Molecular dynamics simulations were performed on the optimal docked complexes. Optimally docked drugs were evaluated for efficacy in the treatment of neurodegenerative diseases through cellular experiments. Results The study found upregulated genes (including WDR43 and THBS1) and one downregulated gene associated with aneurysm rupture. Differences in the expression of these genes indicate greater disease risk. DEmiRNAs associated with ruptured aortic aneurysm were identified, of which two could bind to THBS1 and WDR43. Cromolyn and lanoxin formed the best docking complexes with WDR43 and THBS1, respectively. Cellular experiments showed that cromolyn improved BV2 cell viability and enhanced Aβ42 uptake, suggesting its potential as a therapeutic agent for inflammation-related disorders. Conclusion The findings suggest that WDR43 and THBS1 are potential targets for preventing and treating CV-induced dementia in the elderly. Cromolyn may have therapeutic value in the treatment of Alzheimer's disease and dementia.
Collapse
|