1
|
Altinok DCA, Ohl K, Volkmer S, Brandt GA, Fritze S, Hirjak D. 3D-optical motion capturing examination of sensori- and psychomotor abnormalities in mental disorders: Progress and perspectives. Neurosci Biobehav Rev 2024; 167:105917. [PMID: 39389438 DOI: 10.1016/j.neubiorev.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Sensori-/psychomotor abnormalities refer to a wide range of disturbances in individual motor, affective and behavioral functions that are often observed in mental disorders. However, many of these studies have mainly used clinical rating scales, which can be potentially confounded by observer bias and are not able to detect subtle sensori-/psychomotor abnormalities. Yet, an innovative three-dimensional (3D) optical motion capturing technology (MoCap) can provide more objective and quantifiable data about movements and posture in psychiatric patients. To draw attention to recent rapid progress in the field, we performed a systematic review using PubMed, Medline, Embase, and Web of Science until May 01st 2024. We included 55 studies in the qualitative analysis and gait was the most examined movement. The identified studies suggested that sensori-/psychomotor abnormalities in neurodevelopmental, mood, schizophrenia spectrum and neurocognitive disorders are associated with alterations in spatiotemporal parameters (speed, step width, length and height; stance time, swing time, double limb support time, phases duration, adjusting sway, acceleration, etc.) during various movements such as walking, running, upper body, hand and head movements. Some studies highlighted the advantages of 3D optical MoCap systems over traditional rating scales and measurements such as actigraphy and ultrasound gait analyses. 3D optical MoCap systems are susceptible to detecting differences not only between patients with mental disorders and healthy persons but also among at-risk individuals exhibiting subtle sensori-/psychomotor abnormalities. Overall, 3D optical MoCap systems hold promise for objectively examining sensori-/psychomotor abnormalities, making them valuable tools for use in future clinical trials.
Collapse
Affiliation(s)
- Dilsa Cemre Akkoc Altinok
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristin Ohl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sebastian Volkmer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Geva A Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; German Centre for Mental Health (DZPG), Partner Site Mannheim, Germany.
| |
Collapse
|
2
|
Li Z, Zhu J, Liu J, Shi M, Liu P, Guo J, Hu Z, Liu S, Yang D. Using dual-task gait to recognize Alzheimer's disease and mild cognitive impairment: a cross-sectional study. Front Hum Neurosci 2023; 17:1284805. [PMID: 38188506 PMCID: PMC10770261 DOI: 10.3389/fnhum.2023.1284805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Gait is a potential diagnostic tool for detecting mild cognitive impairment (MCI) and Alzheimer's disease (AD). Nevertheless, little attention has been paid to arm movements during walking, and there is currently no consensus on gait asymmetry. Therefore, in this study, we aimed to determine whether arm motion and gait asymmetry could be utilized for identifying MCI and AD. Methods In total, 102 middle-aged and elderly individuals were included in the final analysis and were assigned to the following three groups: AD (n = 27), MCI (n = 35), and a normal control group (n = 40). Gait and cognitive assessments were conducted for all participants. Gait detection included a single-task gait with free-speed walking and a dual-task gait with adding a cognitive task of successive minus seven to walking. Original gait parameters were collected using a wearable device featuring the MATRIX system 2.0. Gait parameters were shortened to several main gait domains through factor analysis using principal component extraction with varimax rotation. Subsequently, the extracted gait domains were used to differentiate the three groups, and the area under the receiver operating characteristic curve was calculated. Results Factor analysis of single-task gait identified five independent gait domains: rhythm symmetry, rhythm, pace asymmetry, arm motion, and variability. Factor analysis of the dual-task gait identified four gait domains: rhythm, variability, symmetry, and arm motion. During single-task walking, pace asymmetry was negatively correlated with MoCA scores and could distinguish between the AD group and the other two groups. Arm motion was not associated with MoCA scores, and did not exhibit adequate discrimination in either task. Conclusion Currently, there is no reliable evidence suggesting that arm motion can be used to recognize AD or MCI. Gait asymmetry can serve as a potential gait marker for the auxiliary diagnosis of AD but not for MCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Ali N, Liu J, Tian H, Pan W, Tang Y, Zhong Q, Gao Y, Xiao M, Wu H, Sun C, Wu T, Yang X, Wang T, Zhu Y. A novel dual-task paradigm with story recall shows significant differences in the gait kinematics in older adults with cognitive impairment: A cross-sectional study. Front Aging Neurosci 2022; 14:992873. [PMID: 36589542 PMCID: PMC9797676 DOI: 10.3389/fnagi.2022.992873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Cognitive and motor dysfunctions in older people become more evident while dual-tasking. Several dual-task paradigms have been used to identify older individuals at the risk of developing Alzheimer's disease and dementia. This study evaluated gait kinematic parameters for dual-task (DT) conditions in older adults with mild cognitive impairment (MCI), subjective cognitive decline (SCD), and normal cognition (NC). Method This is a cross-sectional, clinical-based study carried out at the Zhongshan Rehabilitation Branch of First Affiliated Hospital of Nanjing Medical University, China. Participants We recruited 83 community-dwelling participants and sorted them into MCI (n = 24), SCD (n = 33), and NC (n = 26) groups based on neuropsychological tests. Their mean age was 72.0 (5.55) years, and male-female ratio was 42/41 (p = 0.112). Each participant performed one single-task walk and four DT walks: DT calculation with subtracting serial sevens; DT naming animals; DT story recall; and DT words recall. Outcome and measures Kinematic gait parameters of speed, knee peak extension angle, and dual-task cost (DTC) were obtained using the Vicon Nexus motion capture system and calculated by Visual 3D software. A mixed-effect linear regression model was used to analyze the data. Results The difference in gait speed under DT story recall and DT calculation was -0.099 m/s and - 0.119 m/s (p = 0.04, p = 0.013) between MCI and SCD, respectively. Knee peak extension angle under DT story recall, words recall, and single task was bigger in the MCI group compared to the NC group, respectively (p = 0.001, p = 0.001, p = 0.004). DTC was higher in the DT story recall test than all other DT conditions (p < 0.001). Conclusion Kinematic gait parameters of knee peak extension angle for the DT story recall were found to be sensitive enough to discriminate MCI individuals from NC group. DTC under DT story recall was higher than the other DT conditions.
Collapse
Affiliation(s)
- Nawab Ali
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Liu
- Clinical Medicine Research Institution, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Huifang Tian
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Pan
- Rehabilitation Department, Daishan Community Health Service Center, Nanjing, China
| | - Yao Tang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China,Rehabilitation Medicine Department, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhong
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yaxin Gao
- Department of Rehabilitation, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China,Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Han Wu
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Cuiyun Sun
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ting Wu
- Neurology Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Tong Wang,
| | - Yi Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Yi Zhu,
| |
Collapse
|