1
|
Müller T, Gerlach M, Hefner G, Hiemke C, Jost WH, Riederer P. Therapeutic drug monitoring in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1247-1262. [PMID: 39227478 PMCID: PMC11489222 DOI: 10.1007/s00702-024-02828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
A patient-tailored therapy of the heterogeneous, neuropsychiatric disorder of Parkinson's disease (PD) aims to improve dopamine sensitive motor symptoms and associated non-motor features. A repeated, individual adaptation of dopamine substituting compounds is required throughout the disease course due to the progress of neurodegeneration. Therapeutic drug monitoring of dopamine substituting drugs may be an essential tool to optimize drug applications. We suggest plasma determination of levodopa as an initial step. The complex pharmacology of levodopa is influenced by its short elimination half-life and the gastric emptying velocity. Both considerably contribute to the observed variability of plasma concentrations of levodopa and its metabolite 3-O-methyldopa. These amino acids compete with other aromatic amino acids as well as branched chain amino acids on the limited transport capacity in the gastrointestinal tract and the blood brain barrier. However, not much is known about plasma concentrations of levodopa and other drugs/drug combinations in PD. Some examples may illustrate this lack of knowledge: Levodopa measurements may allow further insights in the phenomenon of inappropriate levodopa response. They may result from missing compliance, interactions e.g. with treatments for other mainly age-related disorders, like hypertension, diabetes, hyperlipidaemia, rheumatism or by patients themselves independently taken herbal medicines. Indeed, uncontrolled combination of compounds for accompanying disorders as given above with PD drugs might increase the risk of side effects. Determination of other drugs used to treat PD in plasma such as dopamine receptor agonists, amantadine and inhibitors of catechol-O-methyltransferase or monoamine oxidase B may refine and improve the value of calculations of levodopa equivalents. How COMT-Is change levodopa plasma concentrations? How other dopaminergic and non-dopaminergic drugs influence levodopa levels? Also, delivery of drugs as well as single and repeated dosing and continuous levodopa administrations with a possible accumulation of levodopa, pharmacokinetic behaviour of generic and branded compounds appear to have a marked influence on efficacy of drug treatment and side effect profile. Their increase over time may reflect progression of PD to a certain degree. Therapeutic drug monitoring in PD is considered to improve the therapeutic efficacy in the course of this devastating neurologic disorder and therefore is able to contribute to the patients' precision medicine. State-of-the-art clinical studies are urgently needed to demonstrate the usefulness of TDM for optimizing the treatment of PD.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088, Berlin, Germany
| | - Manfred Gerlach
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Hefner
- Psychiatric Hospital, Vitos Clinic for Forensic Psychiatry, Kloster-Eberbach-Straße 4, 65346, Eltville, Germany
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of Mainz, Mainz, Germany
| | | | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel Platz 1, 97080, Würzburg, Germany.
| |
Collapse
|
2
|
Jiang X, Yang J, Yu L, Zhou Z, Yu L, Luo Y, Shan L, Yang R, Wang H, Du X, Huang Q, Zhao C, Liu Y, Sheng J, Fang C. Walnut meal improves meat quality by modulating intestinal microbes in white feather broilers. Heliyon 2024; 10:e34903. [PMID: 39170151 PMCID: PMC11336344 DOI: 10.1016/j.heliyon.2024.e34903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Improving the number of amino acids and unsaturated fatty acids in the diet is a good way to raise the quality of the meat. Currently, most research on the quality of broiler meat focuses on genetic traits; nevertheless, it is unclear how meat quality is regulated. This experiment was conducted to investigate the effects of different supplemental levels of walnut meal (WM) on growth performance, amino acid and fatty acid composition, microbial composition, and meat quality of white feather broilers. 1 week old white feather broilers (n = 120; Body weight 83.76 ± 2.32 g), were randomly divided into 3 treatments and 4 replicates. Walnut meal of basic diet (CK), 5 %(WM-L) and 10 %(WM-H) were added to the diets of white feather broilers, respectively. The results showed that walnut meal could increase L* 24 h (24 h brightness) of breast muscle of white feathered broilers (p < 0.05). The amount of essential amino acids (e.g., isoleucine, methionine, leucine, tryptophan, and phenylalanine), umami amino taste acids (glutamic acid), and PUFA/SFA (polyunsaturated fatty acid) (n-3PUFA and n-6 PUFA) in breast muscle increased as the dose was increased. Furthermore, walnut meal regulated amino acid flavour metabolism by increasing the relative abundance of Bacteroides, bifidobacterium, and enterococcus faecalis, according to 16S rRNA sequencing and functional prediction analysis. The correlation showed that amino acid and fatty acid composition was one of the key factors affecting pH value, meat color and tenderness of chicken. In conclusion, dietary addition of walnut meal can increase the content of essential amino acids and unsaturated fatty acids and the relative abundance of beneficial bacteria of broilers, which is of great significance for improving meat quality of white feather broilers.
Collapse
Affiliation(s)
- Xingjiao Jiang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jiangrui Yang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lihui Yu
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Tea, Yunnan Agricultural University, Kunming, China
| | - Zhengjiang Zhou
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Tea, Yunnan Agricultural University, Kunming, China
| | - Lijun Yu
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yankai Luo
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Linxian Shan
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ruijuan Yang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Haizhen Wang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaocui Du
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of International, Yunnan Agricultural University, Kunming, China
| | - Qichao Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yan Liu
- College of International, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chongye Fang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Fan H, Zhang M, Wen J, Wang S, Yuan M, Sun H, Shu L, Yang X, Pu Y, Cai Z. Microglia in brain aging: An overview of recent basic science and clinical research developments. J Biomed Res 2024; 38:122-136. [PMID: 38403286 PMCID: PMC11001587 DOI: 10.7555/jbr.37.20220220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/25/2022] [Accepted: 01/12/2023] [Indexed: 02/27/2024] Open
Abstract
Aging is characterized by progressive degeneration of tissues and organs, and it is positively associated with an increased mortality rate. The brain, as one of the most significantly affected organs, experiences age-related changes, including abnormal neuronal activity, dysfunctional calcium homeostasis, dysregulated mitochondrial function, and increased levels of reactive oxygen species. These changes collectively contribute to cognitive deterioration. Aging is also a key risk factor for neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. For many years, neurodegenerative disease investigations have primarily focused on neurons, with less attention given to microglial cells. However, recently, microglial homeostasis has emerged as an important mediator in neurological disease pathogenesis. Here, we provide an overview of brain aging from the perspective of the microglia. In doing so, we present the current knowledge on the correlation between brain aging and the microglia, summarize recent progress of investigations about the microglia in normal aging, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and then discuss the correlation between the senescent microglia and the brain, which will culminate with a presentation of the molecular complexity involved in the microglia in brain aging with suggestions for healthy aging.
Collapse
Affiliation(s)
- Haixia Fan
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
- Department of Neurology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Minheng Zhang
- Department of Gerontology, the First People's Hospital of Jinzhong, Jinzhong, Shanxi 030009, China
| | - Jie Wen
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Shengyuan Wang
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Minghao Yuan
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Houchao Sun
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Liu Shu
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Xu Yang
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Yinshuang Pu
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Zhiyou Cai
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| |
Collapse
|
4
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
5
|
Nie S, Ge Y. The link between the gut microbiome, inflammation, and Parkinson's disease. Appl Microbiol Biotechnol 2023; 107:6737-6749. [PMID: 37736791 DOI: 10.1007/s00253-023-12789-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
As our society ages, the growing number of people with Parkinson's disease (PD) puts tremendous pressure on our society. Currently, there is no effective treatment for PD, so there is an urgent need to find new treatment options. In recent years, increasing studies have shown a strong link between gut microbes and PD. In this review, recent advances in research on gut microbes in PD patients were summarized. Increased potential pro-inflammatory microbes and decreased potential anti-inflammatory microbes are prominent features of gut microbiota in PD patients. These changes may lead to an increase in pro-inflammatory substances (such as lipopolysaccharide and H2S) and a decrease in anti-inflammatory substances (such as short-chain fatty acids) to promote inflammation in the gut. This gut microbiota-mediated inflammation will lead to pathological α-synuclein accumulation in the gut, and the inflammation and α-synuclein can spread to the brain via the microbiota-gut-brain axis, thereby promoting neuroinflammation, apoptosis of dopaminergic neurons, and ultimately the development of PD. This review also showed that therapies based on gut microbiota may have a bright future for PD. However, more research and new approaches are still needed to clarify the causal relationship between gut microbes and PD and to determine whether therapies based on gut microbiota are effective in PD patients. KEY POINTS: • There is a strong association between gut microbes and PD. • Inflammation mediated by gut microbes may promote the development of PD. • Therapies based on the gut microbiome provide a promising strategy for PD prevention.
Collapse
Affiliation(s)
- Shiqing Nie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Chen R, Li L, Zhao W. Antibiotics-induced dysbiosis in gut microbiota affects bumblebee health via regulating host amino acid metabolism. Amino Acids 2023; 55:519-528. [PMID: 36749379 DOI: 10.1007/s00726-023-03247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The gut bacteria can provide nutrition for the host, and regulate host physiological functions and host behavior. In this study, we specifically examined the important roles of free amino acids in the gut microbiota-host interaction. Bumblebees were treated with different concentrations of antibiotics (ampicillin combined with low/high concentrations of tetracycline). Then the effect of antibiotic treatments on the host body weight, gut microbiota, and the free amino acid profiles in the hindgut, hemolymph and brain of bees was evaluated. The results showed that antibiotic treatments resulted in a significant decrease in the host body weight at 11 days of age, the total bacterial load and the abundance of Bifidobacterium bohemicum and Gilliamella apicola in the bumblebee's hindgut. Additionally, the higher the concentration of antibiotics (tetracycline), the greater their impact on the body weight and intestinal microbiota of bumblebees. Further, we found that antibiotic treatments caused changes of free amino acids in different tissues, especially in the hindgut and hemolymph, including particularly the decrease of several types of essential amino acids and branched-chain amino acids. Our results suggest that the gut microbiota may modulate the host growth via specific essential amino acids and branched-chain amino acids, which further reveals the crucial roles of free amino acids in the gut microbiota-host interplay.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|