1
|
Petrovska J, Coynel D, Freytag V, de Quervain DJF, Papassotiropoulos A. Polygenic susceptibility for multiple sclerosis is associated with working memory in low-performing young adults. J Neurol Sci 2024; 463:123138. [PMID: 39059048 DOI: 10.1016/j.jns.2024.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex disease with substantial heritability estimates. Besides typical clinical manifestations such as motor and sensory deficits, MS is characterized by structural and functional brain abnormalities, and by cognitive impairment such as decreased working memory (WM) performance. OBJECTIVES We investigated the possible link between the polygenic risk for MS and WM performance in healthy adults (18-35 years). Additionally, we addressed the relationship between polygenic risk for MS and white matter fractional anisotropy (FA). METHODS We generated a polygenic risk score (PRS) of MS susceptibility and investigated its association with WM performance in 3282 healthy adults (two subsamples, N1 = 1803, N2 = 1479). The association between MS-PRS and FA was studied in the second subsample. MS severity PRS associations were also investigated for the WM and FA measurements. RESULTS MS-PRS was significantly associated with WM performance within the 10% lowest WM-performing individuals (p = 0.001; pFDR = 0.018). It was not significantly associated with any of the investigated FA measurements. MS severity PRS was significantly associated with brain-wide mean FA (p = 0.041) and showed suggestive associations with additional FA measurements. CONCLUSIONS By identifying a genetic link between MS and WM performance this study contributes to the understanding of the genetic complexity of MS, and hopefully to the possible identification of molecular pathways linked to cognitive deficits in MS. It also contributes to the understanding of genetic associations with MS severity, as these associations seem to involve distinct biological pathways compared to genetic variants linked to the overall risk of developing MS.
Collapse
Affiliation(s)
- J Petrovska
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland.
| | - D Coynel
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland
| | - V Freytag
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland
| | - D J-F de Quervain
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland; Psychiatric University Clinics, University of Basel, CH-4055 Basel, Switzerland
| | - A Papassotiropoulos
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055 Basel, Switzerland; Psychiatric University Clinics, University of Basel, CH-4055 Basel, Switzerland
| |
Collapse
|
2
|
Pappas C, Bauer CE, Zachariou V, Maillard P, Caprihan A, Shao X, Wang DJ, Gold BT. MRI free water mediates the association between water exchange rate across the blood brain barrier and executive function among older adults. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-15. [PMID: 38947942 PMCID: PMC11211995 DOI: 10.1162/imag_a_00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 07/02/2024]
Abstract
Vascular risk factors contribute to cognitive aging, with one such risk factor being dysfunction of the blood brain barrier (BBB). Studies using non-invasive magnetic resonance imaging (MRI) techniques, such as diffusion prepared arterial spin labeling (DP-ASL), can estimate BBB function by measuring water exchange rate (kw). DP-ASL kw has been associated with cognition, but the directionality and strength of the relationship is still under investigation. An additional variable that measures water in extracellular space and impacts cognition, MRI free water (FW), may help explain prior findings. A total of 94 older adults without dementia (Mean age = 74.17 years, 59.6% female) underwent MRI (DP-ASL, diffusion weighted imaging (DWI)) and cognitive assessment. Mean kw was computed across the whole brain (WB), and mean white matter FW was computed across all white matter. The relationship between kw and three cognitive domains (executive function, processing speed, memory) was tested using multiple linear regression. FW was tested as a mediator of the kw-cognitive relationship using the PROCESS macro. A positive association was found between WB kw and executive function [F(4,85) = 7.81, p < .001, R2= 0.269; β = .245, p = .014]. Further, this effect was qualified by subsequent results showing that FW was a mediator of the WB kw-executive function relationship (indirect effect results: standardized effect = .060, bootstrap confidence interval = .0006 to .1411). Results suggest that lower water exchange rate (kw) may contribute to greater total white matter (WM) FW which, in turn, may disrupt executive function. Taken together, proper fluid clearance at the BBB contributes to higher-order cognitive abilities.
Collapse
Affiliation(s)
- Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Christopher E. Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Pauline Maillard
- Department of Neurology, University of California at Davis, Davis, CA, United States
- Center for Neurosciences, University of California at Davis, Davis, CA, United States
| | | | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Danny J.J. Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brian T. Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Cougo P, Colares H, Farinhas JG, Hämmerle M, Neves P, Bezerra R, Balduino A, Wu O, Pontes-Neto OM. Subtle white matter intensity changes on fluid-attenuated inversion recovery imaging in patients with ischaemic stroke. Brain Commun 2024; 6:fcae089. [PMID: 38529359 PMCID: PMC10963121 DOI: 10.1093/braincomms/fcae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
Leukoaraiosis is a neuroimaging marker of small-vessel disease that is characterized by high signal intensity on fluid-attenuated inversion recovery MRI. There is increasing evidence from pathology and neuroimaging suggesting that the structural abnormalities that characterize leukoaraiosis are actually present within regions of normal-appearing white matter, and that the underlying pathophysiology of white matter damage related to small-vessel disease involves blood-brain barrier damage. In this study, we aim to verify whether leukoaraiosis is associated with elevated signal intensity on fluid-attenuated inversion recovery imaging, a marker of brain tissue free-water accumulation, in normal-appearing white matter. We performed a cross-sectional study of adult patients admitted to our hospital with a diagnosis of acute ischaemic stroke or transient ischaemic attack. Leukoaraiosis was segmented using a semi-automated method involving manual outlining and signal thresholding. White matter regions were segmented based on the probabilistic tissue maps from the International Consortium for Brain Mapping 152 atlas. Also, normal-appearing white matter was further segmented based on voxel distance from leukoaraiosis borders, resulting in five normal-appearing white matter strata at increasing voxel distances from leukoaraiosis. The relationship between mean normalized fluid-attenuated inversion recovery signal intensity on normal-appearing white matter and leukoaraiosis volume was studied in a multivariable statistical analysis using linear mixed modelling, having normal-appearing white matter strata as a clustering variable. One hundred consecutive patients meeting inclusion and exclusion criteria were selected for analysis (53% female, mean age 68 years). Mean normalized fluid-attenuated inversion recovery signal intensity on normal-appearing white matter was higher in the vicinity of leukoaraiosis and progressively lower at increasing distances from leukoaraiosis. In a multivariable analysis, the mean normalized fluid-attenuated inversion recovery signal intensity on normal-appearing white matter was positively associated with leukoaraiosis volume and age (B = 0.025 for each leukoaraiosis quartile increase; 95% confidence interval 0.019-0.030). This association was found similarly across normal-appearing white matter strata. Voxel maps of the mean normalized fluid-attenuated inversion recovery signal intensity on normal-appearing white matter showed an increase in signal intensity that was not adjacent to leukoaraiosis regions. Our results show that normal-appearing white matter exhibits subtle signal intensity changes on fluid-attenuated inversion recovery imaging that are related to leukoaraiosis burden. These results suggest that diffuse free-water accumulation is likely related to the aetiopathogenic processes underlying the development of white matter damage related to small-vessel disease.
Collapse
Affiliation(s)
- Pedro Cougo
- Instituto Americas, Neurology Division, Rio de Janeiro 22775-001, Brazil
- Hospital Samaritano Barra, Department of Neurology, Rio de Janeiro 22775-001, Brazil
| | - Heber Colares
- Hospital Samaritano Barra, Department of Radiology, Rio de Janeiro, 22775-001, Brazil
| | - João Gabriel Farinhas
- Instituto Americas, Neurology Division, Rio de Janeiro 22775-001, Brazil
- Hospital Samaritano Barra, Department of Neurology, Rio de Janeiro 22775-001, Brazil
| | - Mariana Hämmerle
- Hospital Samaritano Barra, Department of Neurology, Rio de Janeiro 22775-001, Brazil
| | - Pedro Neves
- Hospital Samaritano Barra, Department of Radiology, Rio de Janeiro, 22775-001, Brazil
| | - Raquel Bezerra
- Hospital Samaritano Barra, Department of Radiology, Rio de Janeiro, 22775-001, Brazil
| | - Alex Balduino
- Instituto Americas, Neurology Division, Rio de Janeiro 22775-001, Brazil
| | - Ona Wu
- Athinoula A. Martinos Centre for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Octavio M Pontes-Neto
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil
| |
Collapse
|
4
|
Burzynska AZ, Anderson C, Arciniegas DB, Calhoun V, Choi IY, Mendez Colmenares A, Kramer AF, Li K, Lee J, Lee P, Thomas ML. Correlates of axonal content in healthy adult span: Age, sex, myelin, and metabolic health. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100203. [PMID: 38292016 PMCID: PMC10827486 DOI: 10.1016/j.cccb.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
As the emerging treatments that target grey matter pathology in Alzheimer's Disease have limited effectiveness, there is a critical need to identify new neural targets for treatments. White matter's (WM) metabolic vulnerability makes it a promising candidate for new interventions. This study examined the age and sex differences in estimates of axonal content, as well the associations of with highly prevalent modifiable health risk factors such as metabolic syndrome and adiposity. We estimated intra-axonal volume fraction (ICVF) using the Neurite Orientation Dispersion and Density Imaging (NODDI) in a sample of 89 cognitively and neurologically healthy adults (20-79 years). We showed that ICVF correlated positively with age and estimates of myelin content. The ICVF was also lower in women than men, across all ages, which difference was accounted for by intracranial volume. Finally, we found no association of metabolic risk or adiposity scores with the current estimates of ICVF. In addition, the previously observed adiposity-myelin associations (Burzynska et al., 2023) were independent of ICVF. Although our findings confirm the vulnerability of axons to aging, they suggest that metabolic dysfunction may selectively affect myelin content, at least in cognitively and neurologically healthy adults with low metabolic risk, and when using the specific MRI techniques. Future studies need to revisit our findings using larger samples and different MRI approaches, and identify modifiable factors that accelerate axonal deterioration as well as mechanisms linking peripheral metabolism with the health of myelin.
Collapse
Affiliation(s)
- Agnieszka Z Burzynska
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Charles Anderson
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - David B. Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Mendez Colmenares
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology at the University of Illinois, IL, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, USA
| | - Kaigang Li
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|