1
|
Popova M, Messé A, Gulberti A, Gerloff C, Pötter-Nerger M, Hilgetag CC. The effect of deep brain stimulation on cortico-subcortical networks in Parkinson's disease patients with freezing of gait: Exhaustive exploration of a basic model. Netw Neurosci 2024; 8:926-945. [PMID: 39355431 PMCID: PMC11424038 DOI: 10.1162/netn_a_00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/09/2024] [Indexed: 10/03/2024] Open
Abstract
Current treatments of Parkinson's disease (PD) have limited efficacy in alleviating freezing of gait (FoG). In this context, concomitant deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the substantia nigra pars reticulata (SNr) has been suggested as a potential therapeutic approach. However, the mechanisms underlying this approach are unknown. While the current rationale relies on network-based hypotheses of intensified disinhibition of brainstem locomotor areas to facilitate the release of gait motor programs, it is still unclear how simultaneous high-frequency DBS in two interconnected basal ganglia nuclei affects large-scale cortico-subcortical network activity. Here, we use a basic model of neural excitation, the susceptible-excited-refractory (SER) model, to compare effects of different stimulation modes of the network underlying FoG based on the mouse brain connectivity atlas. We develop a network-based computational framework to compare subcortical DBS targets through exhaustive analysis of the brain attractor dynamics in the healthy, PD, and DBS states. We show that combined STN+SNr DBS outperforms STN DBS in terms of the normalization of spike propagation flow in the FoG network. The framework aims to move toward a mechanistic understanding of the network effects of DBS and may be applicable to further perturbation-based therapies of brain disorders.
Collapse
Affiliation(s)
- Mariia Popova
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Arnaud Messé
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Alessandro Gulberti
- Department of Neurology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| |
Collapse
|
2
|
Zhang Y, Zhang C, Wang X, Liu Y, Jin Z, Haacke EM, He N, Li D, Yan F. Iron and neuromelanin imaging in basal ganglia circuitry in Parkinson's disease with freezing of gait. Magn Reson Imaging 2024; 111:229-236. [PMID: 38777243 DOI: 10.1016/j.mri.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE This study aimed to examine the structural alterations of the deep gray matter (DGM) in the basal ganglia circuitry of Parkinson's disease (PD) patients with freezing of gait (FOG) using quantitative susceptibility mapping (QSM) and neuromelanin-sensitive magnetic resonance imaging (NM-MRI). METHODS Twenty-five (25) PD patients with FOG (PD-FOG), 22 PD patients without FOG (PD-nFOG), and 30 age- and sex-matched healthy controls (HCs) underwent 3-dimensional multi-echo gradient recalled echo and NM-MRI scanning. The mean volume and susceptibility of the DGM on QSM data and the relative contrast (NMRC-SNpc) and volume (NMvolume-SNpc) of the substantia nigra pars compacta on NM-MRI were analyzed among groups. A multiple linear regression analysis was performed to explore the associations of FOG severity with MRI measurements and disease stage. RESULTS The PD-FOG group showed higher susceptibility in the bilateral caudal substantia nigra (SN) compared to the HC group. Both the PD-FOG and PD-nFOG groups showed lower volumes than the HC group in the bilateral caudate and putamen as determined from the QSM data. The NMvolume-SNpc on NM-MRI in the PD-FOG group was significantly lower than in the HC and PD-nFOG groups. Both the PD-FOG and PD-nFOG groups showed significantly decreased NMRC-SNpc. CONCLUSIONS The PD-FOG patients showed abnormal neostriatum atrophy, increases in iron deposition in the SN, and lower NMvolume-SNpc. The structural alterations of the DGM in the basal ganglia circuits could lead to the abnormal output of the basal ganglia circuit to trigger the FOG in PD patients.
Collapse
Affiliation(s)
- Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhui Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dianyou Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Lakhani DA, Zhou X, Tao S, Patel V, Wen S, Okromelidze L, Greco E, Lin C, Westerhold EM, Straub S, Wszolek ZK, Tipton PW, Uitti RJ, Grewal SS, Middlebrooks EH. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:13. [PMID: 38191546 PMCID: PMC10774294 DOI: 10.1038/s41531-024-00631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Xiangzhi Zhou
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Vishal Patel
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | | | - Elena Greco
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Chen Lin
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Oshima S, Fushimi Y, Miyake KK, Nakajima S, Sakata A, Okuchi S, Hinoda T, Otani S, Numamoto H, Fujimoto K, Shima A, Nambu M, Sawamoto N, Takahashi R, Ueno K, Saga T, Nakamoto Y. Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance. Jpn J Radiol 2023; 41:1216-1225. [PMID: 37256470 PMCID: PMC10613599 DOI: 10.1007/s11604-023-01452-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson's disease (PD) by showing reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach with deep learning-based reconstruction (dDLR). MATERIALS AND METHODS We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwent NM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with dDLR (NEX1 + dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by visual assessment for differentiating PD from non-PD were also compared between NEX1 and NEX1 + dDLR. RESULTS Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1 + dDLR were significantly higher than in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating characteristic curve (AUC) using CR_SN and CR_LC of NEX1 + dDLR were 0.87 and 0.75, respectively, which had no significant difference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying dDLR. CONCLUSION Image quality for NEX1 + dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diagnosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected to provide clinical merits in diagnosing PD.
Collapse
Affiliation(s)
- Sonoko Oshima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Kanae Kawai Miyake
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hitomi Numamoto
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Atsushi Shima
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masahito Nambu
- MRI Systems Division, Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara-Shi, Tochigi, 324-0036, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Kentaro Ueno
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tsuneo Saga
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Huenchuguala S, Segura-Aguilar J. Why are neuromelanin-containing dopaminergic neurons lost in idiopathic Parkinson's disease? Cell Mol Life Sci 2023; 80:281. [PMID: 37688601 PMCID: PMC11071948 DOI: 10.1007/s00018-023-04880-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/31/2023] [Accepted: 07/16/2023] [Indexed: 09/11/2023]
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno, Chile
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|