1
|
Christidi F, Drouka A, Brikou D, Mamalaki E, Ntanasi E, Karavasilis E, Velonakis G, Angelopoulou G, Tsapanou A, Gu Y, Yannakoulia M, Scarmeas N. The Association between Individual Food Groups, Limbic System White Matter Tracts, and Episodic Memory: Initial Data from the Aiginition Longitudinal Biomarker Investigation of Neurodegeneration (ALBION) Study. Nutrients 2024; 16:2766. [PMID: 39203902 PMCID: PMC11357525 DOI: 10.3390/nu16162766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
(1) Background: Many studies link food intake with clinical cognitive outcomes, but evidence for brain biomarkers, such as memory-related limbic white matter (WM) tracts, is limited. We examined the association between food groups, limbic WM tracts integrity, and memory performance in community-dwelling individuals. (2) Methods: We included 117 non-demented individuals (ALBION study). Verbal and visual episodic memory tests were administered, and a composite z-score was calculated. Diffusion tensor imaging tractography was applied for limbic WM tracts (fornix-FX, cingulum bundle-CB, uncinate fasciculus-UF, hippocampal perforant pathway zone-hPPZ). Food intake was evaluated through four 24-h recalls. We applied linear regression models adjusted for demographics and energy intake. (3) Results: We found significant associations between (a) higher low-to-moderate alcohol intake and higher FX fractional anisotropy (FA), (b) higher full-fat dairy intake and lower hPPZ FA, and (c) higher red meat and cold cuts intake and lower hPPZ FA. None of the food groups was associated with memory performance. (4) Conclusions: Despite non-significant associations between food groups and memory, possibly due to participants' cognitive profile and/or compensatory mechanisms, the study documented a possible beneficial role of low-to-moderate alcohol and a harmful role of full-fat dairy and red meat and cold cuts on limbic WM tracts.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 NHY1 Dublin, Ireland
| | - Archontoula Drouka
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Dora Brikou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Eirini Mamalaki
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Eva Ntanasi
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
- School of Medicine, Democritus University of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgia Angelopoulou
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
| | - Angeliki Tsapanou
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA;
| | - Yian Gu
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA;
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Nikolaos Scarmeas
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
2
|
Nielson KA, Venneri A, Murakami S. Editorial: Insights in neurocognitive aging and behavior: 2022. Front Aging Neurosci 2024; 16:1361839. [PMID: 38292340 PMCID: PMC10825009 DOI: 10.3389/fnagi.2024.1361839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Kristy A. Nielson
- Director, Aging, Imaging, and Memory (AIM) Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Annalena Venneri
- Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, London, United Kingdom
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Shin Murakami
- Department of Foundational Biomedical Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA, United States
| |
Collapse
|
3
|
Wu C, Ruan T, Yuan Y, Xu C, Du L, Wang F, Xu S. Alterations in Synaptic Connectivity and Synaptic Transmission in Alzheimer's Disease with High Physical Activity. J Alzheimers Dis 2024; 99:1005-1022. [PMID: 38759013 DOI: 10.3233/jad-240123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegeneration disease. Physical activity is one of the most promising modifiable lifestyles that can be effective in slowing down the progression of AD at an early stage. Objective Explore the molecular processes impaired in AD that were conversely preserved and enhanced by physical activity. Methods Integrated transcriptomic analyses were performed in datasets that contain AD patients and elders with different degrees of physical activity. The changes of the hub genes were validated through analyzing another two datasets. The expression of the hub genes was further detected in the hippocampus and cortexes of APP/PS1 transgenic mice with or without physical activity by Quantitative polymerase chain reaction (qPCR). Results Cross-comparison highlighted 195 DEGs displaying opposed regulation patterns between AD and high physical activity (HPA). The common DEGs were predominantly involved in synaptic vesicle recycling and synaptic transmission, largely downregulated in AD patients but upregulated in the elders with HPA. Two key modules and four hub genes that were related to synaptic vesicle turnover were obtained from the PPI network. The expression of these hub genes (SYT1, SYT4, SH3GL2, and AP2M1) was significantly decreased in AD transgenic mice and was reversed by HPA training. Conclusions HPA may reverse AD pathology by upregulating a range of synaptic vesicle transport related proteins which might improve the efficiency of synaptic vesicle turnover and facilitate inter-neuronal information transfer. The study provides novel insights into the mechanisms underlining the protective effects of HPA on AD.
Collapse
Affiliation(s)
- Can Wu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Tingting Ruan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yalan Yuan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chunshuang Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Lijuan Du
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, China
| | - Fang Wang
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, China
| | - Shujun Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|