1
|
Georgiadis M, Auf der Heiden F, Abbasi H, Ettema L, Nirschl J, Moein Taghavi H, Wakatsuki M, Liu A, Ho WHD, Carlson M, Doukas M, Koppes SA, Keereweer S, Sobel RA, Setsompop K, Liao C, Amunts K, Axer M, Zeineh M, Menzel M. Micron-resolution fiber mapping in histology independent of sample preparation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.26.586745. [PMID: 38585744 PMCID: PMC10996646 DOI: 10.1101/2024.03.26.586745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mapping the brain's fiber network is crucial for understanding its function and malfunction, but resolving nerve trajectories over large fields of view is challenging. Electron microscopy only studies small brain volumes, diffusion magnetic resonance imaging (dMRI) has limited spatial resolution, and polarization microscopy provides unidirectional orientations in birefringence-pre-serving tissues. Scattered light imaging (SLI) has previously enabled micron-resolution mapping of multi-directional fibers in unstained brain cryo-sections. Here, we show that using a highly sensitive setup, computational SLI (ComSLI) can map fiber networks in histology independent of sample preparation, also in formalin-fixed paraffin-embedded (FFPE) tissues including whole hu-man brain sections. We showcase this method in new and archived, animal and human brain sec-tions, for different stains and steps of sample preparation (in paraffin, deparaffinized, stained) and for unstained fresh-frozen samples. Employing novel analyses, we convert microscopic orienta-tions to microstructure-informed fiber orientation distributions (μFODs). Adapting MR tractog-raphy tools, we trace axonal trajectories via orientation distribution functions and microstructure-derived tractograms revealing white and gray matter connectivity. These allow us to identify al-tered microstructure in multiple sclerosis and leukoencephalopathy, reveal deficient tracts in hip-pocampal sclerosis and Alzheimer's disease, and show key advantages over dMRI, polarization microscopy, and structure tensor analysis. Finally, we map fibers in non-brain tissues, including muscle, bone, and blood vessels, unveiling the tissue's function. Our cost-effective, versatile ap-proach enables micron-resolution studies of intricate fiber networks across tissues, species, diseases, and sample preparations, offering new dimensions to neuroscientific and biomedical research.
Collapse
|
2
|
Cirillo G, Caiazzo G, Franza F, Cirillo M, Papa M, Esposito F. Evidence for direct dopaminergic connections between substantia nigra pars compacta and thalamus in young healthy humans. Front Neural Circuits 2025; 18:1522421. [PMID: 39850841 PMCID: PMC11754968 DOI: 10.3389/fncir.2024.1522421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults. Two MRI data sets were serially acquired using MS-HARDI schemes from ADNI and HCP neuroimaging initiatives in a group of 10 healthy human subjects (5 males, age range: 25-30 years). High resolution 3D-T1 images were independently acquired to individually segment the thalamus and the SNc. Starting from whole-brain probabilistic tractography, all streamlines through the SNc reaching the thalamus were counted, separately for each hemisphere, after excluding streamlines through the substantia nigra pars reticulata and all those reaching the basal ganglia, the cerebellum and the cortex. We found a reproducible structural connectivity between the SNc and the thalamus, with an average of ~12% of the total number of streamlines encompassing the SNc and terminating in the thalamus, with no other major subcortical or cortical structures involved. The first principal component map of dopamine receptor density from a normative PET image data set suggested similar dopamine levels across SNc and thalamus. This is the first quantitative report from in-vivo measurements in humans supporting the presence of a direct nigro-thalamic dopaminergic projection. While histological validation and concurrent PET-MRI remains needed for ultimate proofing of existence, given the potential role of this pathway, the possibility to achieve a good reproducibility of these measurements in humans might enable the monitoring of dopaminergic-related disorders, towards targeted personalized therapies.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, Advanced MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Franza
- Department of Advanced Medical and Surgical Sciences, Advanced MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, Advanced MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, Advanced MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Alkemade A, Großmann R, Bazin PL, Forstmann BU. Mixed methodology in human brain research: integrating MRI and histology. Brain Struct Funct 2023; 228:1399-1410. [PMID: 37365411 PMCID: PMC10335951 DOI: 10.1007/s00429-023-02675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Postmortem magnetic resonance imaging (MRI) can provide a bridge between histological observations and the in vivo anatomy of the human brain. Approaches aimed at the co-registration of data derived from the two techniques are gaining interest. Optimal integration of the two research fields requires detailed knowledge of the tissue property requirements for individual research techniques, as well as a detailed understanding of the consequences of tissue fixation steps on the imaging quality outcomes for both MRI and histology. Here, we provide an overview of existing studies that bridge between state-of-the-art imaging modalities, and discuss the background knowledge incorporated into the design, execution and interpretation of postmortem studies. A subset of the discussed challenges transfer to animal studies as well. This insight can contribute to furthering our understanding of the normal and diseased human brain, and to facilitate discussions between researchers from the individual disciplines.
Collapse
Affiliation(s)
- Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Rosa Großmann
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre-Louis Bazin
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Birte U Forstmann
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Yin Z, Jiang Y, Merk T, Neumann WJ, Ma R, An Q, Bai Y, Zhao B, Xu Y, Fan H, Zhang Q, Qin G, Zhang N, Ma J, Zhang H, Liu H, Shi L, Yang A, Meng F, Zhu G, Zhang J. Pallidal activities during sleep and sleep decoding in dystonia, Huntington's, and Parkinson's disease. Neurobiol Dis 2023; 182:106143. [PMID: 37146835 DOI: 10.1016/j.nbd.2023.106143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Sleep disturbances are highly prevalent in movement disorders, potentially due to the malfunctioning of basal ganglia structures. Pallidal deep brain stimulation (DBS) has been widely used for multiple movement disorders and been reported to improve sleep. We aimed to investigate the oscillatory pattern of pallidum during sleep and explore whether pallidal activities can be utilized to differentiate sleep stages, which could pave the way for sleep-aware adaptive DBS. METHODS We directly recorded over 500 h of pallidal local field potentials during sleep from 39 subjects with movement disorders (20 dystonia, 8 Huntington's disease, and 11 Parkinson's disease). Pallidal spectrum and cortical-pallidal coherence were computed and compared across sleep stages. Machine learning approaches were utilized to build sleep decoders for different diseases to classify sleep stages through pallidal oscillatory features. Decoding accuracy was further associated with the spatial localization of the pallidum. RESULTS Pallidal power spectra and cortical-pallidal coherence were significantly modulated by sleep-stage transitions in three movement disorders. Differences in sleep-related activities between diseases were identified in non-rapid eye movement (NREM) and REM sleep. Machine learning models using pallidal oscillatory features can decode sleep-wake states with over 90% accuracy. Decoding accuracies were higher in recording sites within the internus-pallidum than the external-pallidum, and can be precited using structural (P < 0.0001) and functional (P < 0.0001) whole-brain neuroimaging connectomics. CONCLUSION Our findings revealed strong sleep-stage dependent distinctions in pallidal oscillations in multiple movement disorders. Pallidal oscillatory features were sufficient for sleep stage decoding. These data may facilitate the development of adaptive DBS systems targeting sleep problems that have broad translational prospects.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
5
|
Kikuchi H, Jitsuishi T, Hirono S, Yamaguchi A, Iwadate Y. 2D and 3D structures of the whole-brain, directly visible from 100-micron slice 7TMRI images. INTERDISCIPLINARY NEUROSURGERY 2023. [DOI: 10.1016/j.inat.2023.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
6
|
In vivo probabilistic atlas of white matter tracts of the human subthalamic area combining track density imaging and optimized diffusion tractography. Brain Struct Funct 2022; 227:2647-2665. [PMID: 36114861 PMCID: PMC9618529 DOI: 10.1007/s00429-022-02561-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
The human subthalamic area is a region of high anatomical complexity, tightly packed with tiny fiber bundles. Some of them, including the pallidothalamic, cerebello-thalamic, and mammillothalamic tracts, are relevant targets in functional neurosurgery for various brain diseases. Diffusion-weighted imaging-based tractography has been suggested as a useful tool to map white matter pathways in the human brain in vivo and non-invasively, though the reconstruction of these specific fiber bundles is challenging due to their small dimensions and complex anatomy. To the best of our knowledge, a population-based, in vivo probabilistic atlas of subthalamic white matter tracts is still missing. In the present work, we devised an optimized tractography protocol for reproducible reconstruction of the tracts of subthalamic area in a large data sample from the Human Connectome Project repository. First, we leveraged the super-resolution properties and high anatomical detail provided by short tracks track-density imaging (stTDI) to identify the white matter bundles of the subthalamic area on a group-level template. Tracts identification on the stTDI template was also aided by visualization of histological sections of human specimens. Then, we employed this anatomical information to drive tractography at the subject-level, optimizing tracking parameters to maximize between-subject and within-subject similarities as well as anatomical accuracy. Finally, we gathered subject level tracts reconstructed with optimized tractography into a large-scale, normative population atlas. We suggest that this atlas could be useful in both clinical anatomy and functional neurosurgery settings, to improve our understanding of the complex morphology of this important brain region.
Collapse
|
7
|
Boonstra JT, McGurran H, Temel Y, Jahanshahi A. Nigral neuropathology of Parkinson's motor subtypes coincide with circuitopathies: a scoping review. Brain Struct Funct 2022; 227:2231-2242. [PMID: 35854141 PMCID: PMC9418085 DOI: 10.1007/s00429-022-02531-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
The neuropathological substrates of Parkinson's disease (PD) patients with motor subtypes tremor-dominance (TD), non-tremor dominance (nTD), postural instability and gait difficulty (PIGD), and akinetic-rigid (AR) are not completely differentiated. While extensive pathological research has been conducted on neuronal tissue of PD patients, data have not been discussed in the context of mechanistic circuitry theories differentiating motor subtypes. It is, therefore, expected that a more specific and tailored management of PD symptoms can be accomplished by understanding symptom-specific neuropathological mechanisms with the detail histology can provide. This scoping review gives an overview of the literature comparing TD and nTD PD motor subtypes by clarify observed pathology with underlying physiological circuitry theories. Studies using an array of pathological examination techniques have shown significant differences between TD and nTD PD subtypes. nTD PD patients show higher neuronal loss, gliosis, extraneuronal melanin deposits, and neuroaxonal dystrophy in multiple subregions of the substantia nigra (SN) related to the overactivity of the indirect motor loop. TD patients show more severe cell loss specifically in medial SN subdivisions, and have damage in the retrorubral field A-8 that projects to the dorsolateral striatum and ventromedial thalamus in the direct motor loop. Pathological studies are consistent with neuroimaging data and support contemporary mechanistic circuitry theories of PD motor symptom genesis. Further multimodal neuroimaging and histological studies are required to validate and expand upon these findings.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Peter Debyelaan 25A, 6229 HX, Maastricht, The Netherlands.
| | - Hugo McGurran
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Peter Debyelaan 25A, 6229 HX, Maastricht, The Netherlands
| | - Ali Jahanshahi
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Peter Debyelaan 25A, 6229 HX, Maastricht, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
8
|
Bahners BH, Waterstraat G, Kannenberg S, Curio G, Schnitzler A, Nikulin V, Florin E. Electrophysiological characterization of the hyperdirect pathway and its functional relevance for subthalamic deep brain stimulation. Exp Neurol 2022; 352:114031. [PMID: 35247373 DOI: 10.1016/j.expneurol.2022.114031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
The subthalamic nucleus (STN) receives input from various cortical areas via hyperdirect pathway (HDP) which bypasses the basal-ganglia loop. Recently, the HDP has gained increasing interest, because of its relevance for STN deep brain stimulation (DBS). To understand the HDP's role cortical responses evoked by STN-DBS have been investigated. These responses have short (<2 ms), medium (2-15 ms), and long (20-70 ms) latencies. Medium-latency responses are supposed to represent antidromic cortical activations via HDP. Together with long-latency responses the medium responses can potentially be used as biomarker of DBS efficacy as well as side effects. We here propose that the activation sequence of the cortical evoked responses can be conceptualized as high frequency oscillations (HFO) for signal analysis. HFO might therefore serve as marker for antidromic activation. Using existing knowledge on HFO recordings, this approach allows data analyses and physiological modeling to advance the pathophysiological understanding of cortical DBS-evoked high-frequency activity.
Collapse
Affiliation(s)
- Bahne Hendrik Bahners
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gunnar Waterstraat
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neurophysics Group, Department of Neurology, Berlin, Germany
| | - Silja Kannenberg
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gabriel Curio
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neurophysics Group, Department of Neurology, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
9
|
Jeon H, Lee H, Kwon DH, Kim J, Tanaka-Yamamoto K, Yook JS, Feng L, Park HR, Lim YH, Cho ZH, Paek SH, Kim J. Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus. Cell Rep 2022; 38:110439. [PMID: 35235786 DOI: 10.1016/j.celrep.2022.110439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
The subthalamic nucleus (STN) controls psychomotor activity and is an efficient therapeutic deep brain stimulation target in individuals with Parkinson's disease. Despite evidence indicating position-dependent therapeutic effects and distinct functions within the STN, the input circuit and cellular profile in the STN remain largely unclear. Using neuroanatomical techniques, we construct a comprehensive connectivity map of the indirect and hyperdirect pathways in the mouse STN. Our circuit- and cellular-level connectivities reveal a topographically graded organization with three types of indirect and hyperdirect pathways (external globus pallidus only, STN only, and collateral). We confirm consistent pathways into the human STN by 7 T MRI-based tractography. We identify two functional types of topographically distinct glutamatergic STN neurons (parvalbumin [PV+/-]) with synaptic connectivity from indirect and hyperdirect pathways. Glutamatergic PV+ STN neurons contribute to burst firing. These data suggest a complex interplay of information integration within the basal ganglia underlying coordinated movement control and therapeutic effects.
Collapse
Affiliation(s)
- Hyungju Jeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea
| | - Hojin Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Dae-Hyuk Kwon
- Neuroscience Convergence Center, Korea University, Seoul 02841, Korea
| | - Jiwon Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Jang Soo Yook
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea
| | - Linqing Feng
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea
| | - Hye Ran Park
- Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| | - Yong Hoon Lim
- Neurosurgery, Movement Disorder Center, Seoul National University College of Medicine, Advanced Institute of Convergence Technology (AICT), Seoul National University, Seoul 03080, Korea
| | - Zang-Hee Cho
- Neuroscience Convergence Center, Korea University, Seoul 02841, Korea
| | - Sun Ha Paek
- Neurosurgery, Movement Disorder Center, Seoul National University College of Medicine, Advanced Institute of Convergence Technology (AICT), Seoul National University, Seoul 03080, Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul 02792 Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea.
| |
Collapse
|
10
|
Liu W, Wang C, He T, Su M, Lu Y, Zhang G, Münte TF, Jin L, Ye Z. Substantia Nigra Integrity Correlates with Sequential Working Memory in Parkinson's Disease. J Neurosci 2021; 41:6304-6313. [PMID: 34099507 PMCID: PMC8287987 DOI: 10.1523/jneurosci.0242-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Maintaining and manipulating sequences online is essential for daily activities such as scheduling a day. In Parkinson's disease (PD), sequential working memory deficits have been associated with altered regional activation and functional connectivity in the basal ganglia. This study demonstrates that the substantia nigra (SN) integrity correlated with basal ganglia function and sequencing performance in 29 patients with PD (17 women) and 29 healthy controls (HCs; 18 women). In neuromelanin-sensitive structural magnetic resonance imaging (MRI), PD patients showed smaller SNs than HCs. In a digit-ordering task with functional MRI (fMRI), participants either recalled sequential digits in the original order (pure recall) or rearranged the digits and recalled the new sequence (reorder and recall). PD patients performed less accurately than HCs, accompanied by the caudate and pallidal hypoactivation, subthalamic hyperactivation, and weakened functional connectivity between the bilateral SN and all three basal ganglia regions. PD patients with larger SNs tended to exhibit smaller ordering-related accuracy costs (reorder and recall vs pure recall). This effect was fully mediated by the ordering-related caudate activation. Unlike HCs, the ordering-related accuracy cost correlated with the ordering-related caudate activation but not subthalamic activation in PD patients. Moreover, the ordering-related caudate activation correlated with the SN area but not with the daily dose of D2/3 receptor agonists. In PD patients, the daily dose of D2/3 receptor agonists correlated with the ordering-related subthalamic activation, which was not related to the accuracy cost. The findings suggest that damage to the SN may lead to sequential working memory deficits in PD patients, mediated by basal ganglia dysfunction.SIGNIFICANCE STATEMENT We demonstrate that damage to the SN correlates with basal ganglia dysfunction and poor sequencing performance in PD patients. In neuromelanin-sensitive MRI, PD patients showed smaller SNs than healthy controls. In a digit-ordering task with fMRI, PD patients' lower task accuracy was accompanied by the caudate and pallidal hypoactivation, subthalamic hyperactivation, and weakened functional connectivity between the SN and basal ganglia. PD patients with larger SNs exhibited greater ordering-related caudate activation and lower ordering-related accuracy cost when sequencing digits. PD patients with more daily exposure to D2/3 receptor agonists exhibited greater ordering-related subthalamic activation, which did not reduce accuracy cost. It suggests that the SN may affect sequencing performance by regulating the task-dependent caudate activation in PD patients.
Collapse
Affiliation(s)
- Wenyue Liu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changpeng Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tingting He
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Minghong Su
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan Lu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guanyu Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, 23538 Lübeck, Germany
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Ye
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China
| |
Collapse
|
11
|
Scholz A, Etzel R, May MW, Mahmutovic M, Tian Q, Ramos-Llordén G, Maffei C, Bilgiç B, Witzel T, Stockmann JP, Mekkaoui C, Wald LL, Huang SY, Yendiki A, Keil B. A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex vivo human brain on the 3 T connectome scanner. Neuroimage 2021; 238:118256. [PMID: 34118399 PMCID: PMC8439104 DOI: 10.1016/j.neuroimage.2021.118256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
In vivo diffusion-weighted magnetic resonance imaging is limited in signal-to-noise-ratio (SNR) and acquisition time, which constrains spatial resolution to the macroscale regime. Ex vivo imaging, which allows for arbitrarily long scan times, is critical for exploring human brain structure in the mesoscale regime without loss of SNR. Standard head array coils designed for patients are sub-optimal for imaging ex vivo whole brain specimens. The goal of this work was to design and construct a 48-channel ex vivo whole brain array coil for high-resolution and high b-value diffusion-weighted imaging on a 3T Connectome scanner. The coil was validated with bench measurements and characterized by imaging metrics on an agar brain phantom and an ex vivo human brain sample. The two-segment coil former was constructed for a close fit to a whole human brain, with small receive elements distributed over the entire brain. Imaging tests including SNR and G-factor maps were compared to a 64-channel head coil designed for in vivo use. There was a 2.9-fold increase in SNR in the peripheral cortex and a 1.3-fold gain in the center when compared to the 64-channel head coil. The 48-channel ex vivo whole brain coil also decreases noise amplification in highly parallel imaging, allowing acceleration factors of approximately one unit higher for a given noise amplification level. The acquired diffusion-weighted images in a whole ex vivo brain specimen demonstrate the applicability and advantage of the developed coil for high-resolution and high b-value diffusion-weighted ex vivo brain MRI studies.
Collapse
Affiliation(s)
- Alina Scholz
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany.
| | - Robin Etzel
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany
| | - Markus W May
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany
| | - Qiyuan Tian
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Maffei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgiç
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Thomas Witzel
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jason P Stockmann
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Choukri Mekkaoui
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Lawrence L Wald
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Susie Yi Huang
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Anastasia Yendiki
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
12
|
Boonstra JT, Michielse S, Roebroeck A, Temel Y, Jahanshahi A. Dedicated container for postmortem human brain ultra-high field magnetic resonance imaging. Neuroimage 2021; 235:118010. [PMID: 33819610 DOI: 10.1016/j.neuroimage.2021.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The emerging field of ultra-high field MRI (UHF-MRI, 7 Tesla and higher) provides the opportunity to image human brains at a higher resolution and with higher signal-to-noise ratios compared to the more widely available 1.5 and 3T scanners. Scanning postmortem tissue additionally allows for greatly increased scan times and fewer movement issues leading to improvements in image quality. However, typical postmortem neuroimaging routines involve placing the tissue within plastic bags that leave room for susceptibility artifacts from tissue-air interfaces, inadequate submersion, and leakage issues. To address these challenges in postmortem imaging, a custom-built nonferromagnetic container was developed that allows whole brain hemispheres to be scanned at sub-millimeter resolution within typical head-coils. METHOD The custom-built polymethylmethacrylaat container consists of a cylinder with a hemispheric side and a lid with valves on the adjacent side. This shape fits within common MR head-coils and allows whole hemispheres to be submerged and vacuum sealed within it reducing imaging artifacts that would otherwise arise at air-tissue boundaries. Two hemisphere samples were scanned on a Siemens 9.4T Magnetom MRI scanner. High resolution T2* weighted data was obtained with a custom 3D gradient echo (GRE) sequence and diffusion-weighted imaging (DWI) scans were obtained with a 3D kT-dSTEAM sequence along 48 directions. RESULTS The custom-built container proved to submerge and contain tissue samples effectively and showed no interferences with MR scanning acquisition. The 3D GRE sequence provided high resolution isotropic T2* weighted data at 250 μm which showed a clear visualization of gray and white matter structures. DWI scans allowed for dense reconstruction of structural white matter connections via tractography. CONCLUSION Using this custom-built container worked towards achieving high quality MR images of postmortem brain material. This procedure can have advantages over traditional schemes including utilization of a standardized protocol and the reduced likelihood of leakage. This methodology could be adjusted and used to improve typical postmortem imaging routines.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands.
| | - Stijn Michielse
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, the Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands
| |
Collapse
|
13
|
De Barros A, Arribarat G, Lotterie JA, Dominguez G, Chaynes P, Péran P. Iron distribution in the lentiform nucleus: A post-mortem MRI and histology study. Brain Struct Funct 2021; 226:351-364. [PMID: 33389044 DOI: 10.1007/s00429-020-02175-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/09/2020] [Indexed: 01/19/2023]
Abstract
Iron plays an important role in many neurobiological processes, especially in the basal ganglia, the brain structures with the highest concentration. Composed of the pallidum and putamen, the lentiform nucleus plays a key role in the basal ganglia circuitry. With MRI advances, iron-based sequences such as R2* and quantitative susceptibility mapping (QSM) are now available for detecting and quantifying iron in different brain structures. Since their validation using classic iron detection techniques (histology or physical techniques), these sequences have attracted growing clinical attention, especially in the field of extrapyramidal syndromes that particularly affect the basal nuclei. Accurate mapping of iron in these nuclei and their connections is needed to gain a better understanding of this specific anatomy, before considering its involvement in the physiopathological processes. We performed R2* and QSM along with Perls histology, to gain new insights into the distribution of iron in the lentiform nucleus and its surrounding structures, based on four specimens obtained from voluntary donors. We found that iron is preferentially distributed in the anterior part of the globus pallidus externus and the posterior part of the putamen. The lateral wall of the putamen is iron-poor, compared with the lateral medullary lamina and intraputaminal fibers. The relevance of perivascular iron concentration, along with pallido- and putaminofugal iron-rich fibers, is discussed.
Collapse
Affiliation(s)
- Amaury De Barros
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier-INSERM, CHU Purpan, Pavillon Baudot, Place du Dr Baylac, 31024, Toulouse, Cedex 3, France. .,Department of Anatomy, Toulouse Faculty of Medicine, Toulouse federal University, Toulouse, France. .,Neuroscience (Neurosurgery) Center, Toulouse University Hospital, Toulouse, France.
| | - Germain Arribarat
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier-INSERM, CHU Purpan, Pavillon Baudot, Place du Dr Baylac, 31024, Toulouse, Cedex 3, France
| | - Jean Albert Lotterie
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier-INSERM, CHU Purpan, Pavillon Baudot, Place du Dr Baylac, 31024, Toulouse, Cedex 3, France.,Neuroscience (Neurosurgery) Center, Toulouse University Hospital, Toulouse, France
| | - Gaelle Dominguez
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier-INSERM, CHU Purpan, Pavillon Baudot, Place du Dr Baylac, 31024, Toulouse, Cedex 3, France.,Neuropathology Unit, University Pathology Laboratory, Toulouse University Hospital-University of Toulouse III-Paul Sabatier, Toulouse, France
| | - Patrick Chaynes
- Department of Anatomy, Toulouse Faculty of Medicine, Toulouse federal University, Toulouse, France.,Neuroscience (Neurosurgery) Center, Toulouse University Hospital, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier-INSERM, CHU Purpan, Pavillon Baudot, Place du Dr Baylac, 31024, Toulouse, Cedex 3, France
| |
Collapse
|
14
|
Alkemade A, Forstmann BU. Imaging of the human subthalamic nucleus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:403-416. [PMID: 34225944 DOI: 10.1016/b978-0-12-820107-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human subthalamic nucleus (STN) is a small lens shaped iron rich nucleus, which has gained substantial interest as a target for deep brain stimulation surgery for a variety of movement disorders. The internal anatomy of the human STN has not been fully elucidated, and an intensive debate, discussing the level of overlap between putative limbic, associative, and motor zones within the STN is still ongoing. In this chapter, we have summarized anatomical information obtained using different neuroimaging modalities focusing on the anatomy of the STN. Additionally, we have highlighted a number of major challenges faced when using magnetic resonance imaging (MRI) approaches for the visualization of small iron rich deep brain structures such as the STN. In vivo MRI and postmortem microscopy efforts provide valuable complementary information on the internal structure of the STN, although the results are not always fully aligned. Finally, we provide an outlook on future efforts that could contribute to the development of an integrative research approach that will help with the reconciliation of seemingly divergent results across research approaches.
Collapse
Affiliation(s)
- Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Birte U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Arribarat G, De Barros A, Péran P. Modern Brainstem MRI Techniques for the Diagnosis of Parkinson's Disease and Parkinsonisms. Front Neurol 2020; 11:791. [PMID: 32849237 PMCID: PMC7417676 DOI: 10.3389/fneur.2020.00791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
The brainstem is the earliest vulnerable structure in many neurodegenerative diseases like in Multiple System Atrophy (MSA) or Parkinson's disease (PD). Up-to-now, MRI studies have mainly focused on whole-brain data acquisition. Due to its spatial localization, size, and tissue characteristics, brainstem poses particular challenges for MRI. We provide a brief overview on recent advances in brainstem-related MRI markers in Parkinson's disease and Parkinsonism's. Several MRI techniques investigating brainstem, mainly the midbrain, showed to be able to discriminate PD patients from controls or to discriminate PD patients from atypical parkinsonism patients: iron-sensitive MRI, nigrosome imaging, neuromelanin-sensitive MRI, diffusion tensor imaging and advanced diffusion imaging. A standardized multimodal brainstem-dedicated MRI approach at high resolution able to quantify microstructural modification in brainstem nuclei would be a promising tool to detect early changes in parkinsonian syndromes.
Collapse
Affiliation(s)
- Germain Arribarat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Centre de Recherche Cerveau et Cognition (CNRS, Cerco, UMR5549), UPS, Toulouse, France
| | - Amaury De Barros
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Anatomy, Toulouse Faculty of Medicine, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
16
|
Barbone GE, Bravin A, Mittone A, Kraiger MJ, Hrabě de Angelis M, Bossi M, Ballarini E, Rodriguez-Menendez V, Ceresa C, Cavaletti G, Coan P. Establishing sample-preparation protocols for X-ray phase-contrast CT of rodent spinal cords: Aldehyde fixations and osmium impregnation. J Neurosci Methods 2020; 339:108744. [DOI: 10.1016/j.jneumeth.2020.108744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
|
17
|
Emmi A, Antonini A, Macchi V, Porzionato A, De Caro R. Anatomy and Connectivity of the Subthalamic Nucleus in Humans and Non-human Primates. Front Neuroanat 2020; 14:13. [PMID: 32390807 PMCID: PMC7189217 DOI: 10.3389/fnana.2020.00013] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/13/2020] [Indexed: 02/02/2023] Open
Abstract
The Subthalamic Nucleus (STh) is an oval-shaped diencephalic structure located ventrally to the thalamus, playing a fundamental role in the circuitry of the basal ganglia. In addition to being involved in the pathophysiology of several neurodegenerative disorders, such as Huntington’s and Parkinson’s disease, the STh is one of the target nuclei for deep brain stimulation. However, most of the anatomical evidence available derives from non-human primate studies. In this review, we will present the topographical and morphological organization of the nucleus and its connections to structurally and functionally related regions of the basal ganglia circuitry. We will also highlight the importance of additional research in humans focused on validating STh connectivity, cytoarchitectural organization, and its functional subdivision.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy
| | - Veronica Macchi
- Institute of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
18
|
Lehto LJ, Canna A, Wu L, Sierra A, Zhurakovskaya E, Ma J, Pearce C, Shaio M, Filip P, Johnson MD, Low WC, Gröhn O, Tanila H, Mangia S, Michaeli S. Orientation selective deep brain stimulation of the subthalamic nucleus in rats. Neuroimage 2020; 213:116750. [PMID: 32198048 DOI: 10.1016/j.neuroimage.2020.116750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/22/2020] [Accepted: 03/13/2020] [Indexed: 11/28/2022] Open
Abstract
Deep brain stimulation (DBS) has become an important tool in the management of a wide spectrum of diseases in neurology and psychiatry. Target selection is a vital aspect of DBS so that only the desired areas are stimulated. Segmented leads and current steering have been shown to be promising additions to DBS technology enabling better control of the stimulating electric field. Recently introduced orientation selective DBS (OS-DBS) is a related development permitting sensitization of the stimulus to axonal pathways with different orientations by freely controlling the primary direction of the electric field using multiple contacts. Here, we used OS-DBS to stimulate the subthalamic nucleus (STN) in healthy rats while simultaneously monitoring the induced brain activity with fMRI. Maximal activation of the sensorimotor and basal ganglia-thalamocortical networks was observed when the electric field was aligned mediolaterally in the STN pointing in the lateral direction, while no cortical activation was observed with the electric field pointing medially to the opposite direction. Such findings are consistent with mediolateral main direction of the STN fibers, as seen with high resolution diffusion imaging and histology. The asymmetry of the OS-DBS dipolar field distribution using three contacts along with the potential stimulation of the internal capsule, are also discussed. We conclude that OS-DBS offers an additional degree of flexibility for optimization of DBS of the STN which may enable a better treatment response.
Collapse
Affiliation(s)
- Lauri J Lehto
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Antonietta Canna
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Lin Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Zhurakovskaya
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Clairice Pearce
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Maple Shaio
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Pavel Filip
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; First Department of Neurology, Faculty of Medicine, Masaryk University and University Hospital of St. Anne, Brno, Czech Republic
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Kim AY, Oh C, Im HJ, Baek HM. Enhanced Bidirectional Connectivity of the Subthalamo-pallidal Pathway in 6-OHDA-mouse Model of Parkinson's Disease Revealed by Probabilistic Tractography of Diffusion-weighted MRI at 9.4T. Exp Neurobiol 2020; 29:80-92. [PMID: 32122110 PMCID: PMC7075660 DOI: 10.5607/en.2020.29.1.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
An important challenge in Parkinson’s disease (PD) based neuroscience and neuroimaging is mapping the neuronal connectivity of the basal ganglia to understand how the disease affects brain circuitry. However, a majority of diffusion tractography studies have shown difficulties in revealing connections between distant anatomic brain regions and visualizing basal ganglia connectome. In this current study, we investigated the differences in basal ganglia connectivity between 6-OHDA induced ex-vivo PD mouse model and normal ex-vivo mouse model by using diffusion tensor imaging tractography from diffusion-weighted images obtained with a high resolution 9.4 T MR scanner. Connectivity pattern of the basal ganglia were compared between five 6-OHDA and five control ex-vivo mouse brains using results of probabilistic tractography generated with PROBTRACKX. When compared with control mouse, 6-OHDA mouse showed significant enhancements to motor territory-related subthalamo-pallidal and pallido-subthalamic connectivity. Multi-fiber tractography combined with diffusion MRI data has the potential to help recognize the abnormalities found in connectivity of psychiatric and neurologic disease models.
Collapse
Affiliation(s)
- A-Yoon Kim
- Department of Health Science and Technology, GAIHST, Gachon University, Incheon 21936, Korea
| | - Chiwoo Oh
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea
| | - Hyung-Jun Im
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea
| | - Hyeon-Man Baek
- Department of Health Science and Technology, GAIHST, Gachon University, Incheon 21936, Korea.,Lee Gil Ya Cancer & Diabetes Institute, Gachon University, Incheon 21999, Korea
| |
Collapse
|
20
|
Alho EJL, Alho ATDL, Horn A, Martin MDGM, Edlow BL, Fischl B, Nagy J, Fonoff ET, Hamani C, Heinsen H. The Ansa Subthalamica: A Neglected Fiber Tract. Mov Disord 2019; 35:75-80. [PMID: 31758733 DOI: 10.1002/mds.27901] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eduardo Joaquim Lopes Alho
- Department of Neurology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany.,Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - Ana Tereza Di Lorenzo Alho
- Department of Radiology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Andreas Horn
- Department of Neurology, Neuromodulation and Movement Disorders Unit, Charité-University Medicine (CCM), Berlin, Germany
| | - Maria da Graça M Martin
- Department of Radiology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachussets, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachussets, USA.,Department of Radiology, Mass. General Hospital, Boston, Massachusetts, USA.,EECS/HST MIT, Cambridge, Massachusetts, USA
| | | | - Erich T Fonoff
- Department of Neurology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Division of Neurosurgery Sunnybrook Health Sciences Center, Harquail Centre for Neuromodulation, Toronto, Ontario, Canada
| | - Helmut Heinsen
- Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany.,Department of Radiology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Rimmele DL, Frey BM, Cheng B, Schulz R, Krawinkel LA, Bönstrup M, Braass H, Gerloff C, Thomalla G. Association of Extrapyramidal Tracts' Integrity With Performance in Fine Motor Skills After Stroke. Stroke 2019; 49:2928-2932. [PMID: 30571408 DOI: 10.1161/strokeaha.118.022706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background and Purpose- Tractography by diffusion tensor imaging has extended our knowledge on the contribution of damage to different pathways to residual motor function after stroke. Integrity of the corticospinal tract (CST), for example, has been identified to characterize and predict its course. Yet there is only scarce data that allow a judgment on the impact of extrapyramidal pathways between the basal ganglia on motor function poststroke. We aimed at studying their association with performance in fine motor skills after stroke. Methods- We performed probabilistic tractography and reconstructed nigro-pallidal tracts connecting substantia nigra and globus pallidus, as well as the CST in 26 healthy subjects. Resulting tracts were registered to the individual images of 20 patients 3 months after stroke, and their microstructural integrity was measured by fractional anisotropy. Clinical examination of the patients' gross (grip force) and fine (nine-hole peg test) motor skills was performed 1 year after stroke. For assessment of factors influencing nine-hole peg test, we used a multivariate model. Results- Nigro-pallidal tracts were traceable in all participants, had no overlap to the CST and passed the nucleus subthalamicus. In stroke patients, nigro-pallidal tracts ipsilateral to the stroke lesion showed a significantly reduced fractional anisotropy (ratio, 0.96±0.02; P=0.021). One year after stroke, nine-hole peg test values were significantly slower for the affected hand, while grip force was comparable between both hands. Reduced integrity of the nigro-pallidal tracts was associated with worse performance in the nine-hole peg test ( P=0.040), as was reduced integrity of the CST ( P<0.001) and younger age ( P<0.001). Conclusions- Nigro-pallidal tracts with containing connections of the nucleus subthalamicus represent a relevant part of the extrapyramidal system and specifically contribute to residual fine motor skills after stroke beyond the well-known contribution of the CST. They may deliver supportive information for prediction of motor recovery after stroke.
Collapse
Affiliation(s)
- D Leander Rimmele
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Benedikt M Frey
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Bastian Cheng
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Robert Schulz
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Lutz A Krawinkel
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Marlene Bönstrup
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.).,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (M.B.)
| | - Hanna Braass
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Christian Gerloff
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| | - Götz Thomalla
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (L.R., B.M.F., B.C., R.S., L.A.K., M.B., H.B., C.G., G.T.)
| |
Collapse
|
22
|
Isaacs BR, Trutti AC, Pelzer E, Tittgemeyer M, Temel Y, Forstmann BU, Keuken MC. Cortico-basal white matter alterations occurring in Parkinson's disease. PLoS One 2019; 14:e0214343. [PMID: 31425517 PMCID: PMC6699705 DOI: 10.1371/journal.pone.0214343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Magnetic resonance imaging studies typically use standard anatomical atlases for identification and analyses of (patho-)physiological effects on specific brain areas; these atlases often fail to incorporate neuroanatomical alterations that may occur with both age and disease. The present study utilizes Parkinson's disease and age-specific anatomical atlases of the subthalamic nucleus for diffusion tractography, assessing tracts that run between the subthalamic nucleus and a-priori defined cortical areas known to be affected by Parkinson's disease. The results show that the strength of white matter fiber tracts appear to remain structurally unaffected by disease. Contrary to that, Fractional Anisotropy values were shown to decrease in Parkinson's disease patients for connections between the subthalamic nucleus and the pars opercularis of the inferior frontal gyrus, anterior cingulate cortex, the dorsolateral prefrontal cortex and the pre-supplementary motor, collectively involved in preparatory motor control, decision making and task monitoring. While the biological underpinnings of fractional anisotropy alterations remain elusive, they may nonetheless be used as an index of Parkinson's disease. Moreover, we find that failing to account for structural changes occurring in the subthalamic nucleus with age and disease reduce the accuracy and influence the results of tractography, highlighting the importance of using appropriate atlases for tractography.
Collapse
Affiliation(s)
- Bethany. R. Isaacs
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne. C. Trutti
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
- Cognitive Psychology, University of Leiden, Leiden, the Netherlands
| | - Esther Pelzer
- Translational Neurocircuitry, Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, University Clinics, Cologne, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry, Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, University Clinics, Cologne, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Birte. U. Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
| | - Max. C. Keuken
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Shim JH, Im SJ, Kim AY, Kim YT, Kim EB, Baek HM. Generation of Mouse Basal Ganglia Diffusion Tractography Using 9.4T MRI. Exp Neurobiol 2019; 28:300-310. [PMID: 31138997 PMCID: PMC6526107 DOI: 10.5607/en.2019.28.2.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Over the years, diffusion tractography has seen increasing use for comparing minute differences in connectivity of brain structures in neurodegenerative diseases and treatments. Studies on connectivity between basal ganglia has been a focal point for studying the effects of diseases such as Parkinson's and Alzheimer's, as well as the effects of treatments such as deep brain stimulation. Additionally, in previous studies, diffusion tractography was utilized in disease mouse models to identify white matter alterations, as well as biomarkers that occur in the progression of disease. However, despite the extensive use of mouse models to study model diseases, the structural connectivity of the mouse basal ganglia has been inadequately explored. In this study, we present the methodology of segmenting the basal ganglia of a mouse brain, then generating diffusion tractography between the segmented basal ganglia structures. Additionally, we compare the relative levels of connectivity of connecting fibers between each basal ganglia structure, as well as visualize the shapes of each connection. We believe that our results and future studies utilizing diffusion tractography will be beneficial for properly assessing some of the connectivity changes that are found in the basal ganglia of various mouse models.
Collapse
Affiliation(s)
- Jae-Hyuk Shim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Sang-Jin Im
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - A-Yoon Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Yong-Tae Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Eun Bee Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
24
|
Mulder MJ, Keuken MC, Bazin PL, Alkemade A, Forstmann BU. Size and shape matter: The impact of voxel geometry on the identification of small nuclei. PLoS One 2019; 14:e0215382. [PMID: 30978242 PMCID: PMC6461289 DOI: 10.1371/journal.pone.0215382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
How, and to what extent do size and shape of a voxel measured with magnetic resonance imaging (MRI) affect the ability to visualize small brain nuclei? Despite general consensus that voxel geometry affects volumetric properties of regions of interest, particularly those of small brain nuclei, no quantitative data on the influence of voxel size and shape on labeling accuracy is available. Using simulations, we investigated the selective influence of voxel geometry by reconstructing simulated ellipsoid structures with voxels varying in shape and size. For each reconstructed ellipsoid, we calculated differences in volume and similarity between the labeled volume and the predefined dimensions of the ellipsoid. Probability functions were derived from one or two individual raters and a simulated ground truth for reference. As expected, larger voxels (i.e., coarser resolution) and increasing anisotropy results in increased deviations of both volume and shape measures, which is of particular relevance for small brain structures. Our findings clearly illustrate the anatomical inaccuracies introduced by the application of large and/or anisotropic voxels. To ensure deviations occur within the acceptable range (Dice coefficient scores; DCS > 0.75, corresponding to < 57% volume deviation), the volume of isotropic voxels should not exceed 5% of the total volume of the region of interest. When high accuracy is required (DCS > 0.90, corresponding to a < 19% volume deviation), the volumes of isotropic voxels should not exceed 0.08%, of the total volume. Finally, when large anisotropic factors (>3) are used, and the ellipsoid is orthogonal to the slice axes, having its long axis in the imaging plane, the voxel volume should not exceed 0.005% of the total volume. This allows sufficient compensation of anisotropy effects, in order to reach accuracy in the acceptable range (DCS > 0.75, corresponding to >57% volume deviation).
Collapse
Affiliation(s)
- Martijn J Mulder
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands.,Experimental Psychology, Utrecht University, Utrecht, the Netherlands
| | - Max C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre-Louis Bazin
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Birte U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Roebroeck A, Miller KL, Aggarwal M. Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances. NMR IN BIOMEDICINE 2019; 32:e3941. [PMID: 29863793 PMCID: PMC6492287 DOI: 10.1002/nbm.3941] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 05/23/2023]
Abstract
This review discusses ex vivo diffusion magnetic resonance imaging (dMRI) as an important research tool for neuroanatomical investigations and the validation of in vivo dMRI techniques, with a focus on the human brain. We review the challenges posed by the properties of post-mortem tissue, and discuss state-of-the-art tissue preparation methods and recent advances in pulse sequences and acquisition techniques to tackle these. We then review recent ex vivo dMRI studies of the human brain, highlighting the validation of white matter orientation estimates and the atlasing and mapping of large subcortical structures. We also give particular emphasis to the delineation of layered gray matter structure with ex vivo dMRI, as this application illustrates the strength of its mesoscale resolution over large fields of view. We end with a discussion and outlook on future and potential directions of the field.
Collapse
Affiliation(s)
- Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | | | - Manisha Aggarwal
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
26
|
O'Sullivan S, Heinsen H, Grinberg LT, Chimelli L, Amaro E, do Nascimento Saldiva PH, Jeanquartier F, Jean-Quartier C, da Graça Morais Martin M, Sajid MI, Holzinger A. The role of artificial intelligence and machine learning in harmonization of high-resolution post-mortem MRI (virtopsy) with respect to brain microstructure. Brain Inform 2019; 6:3. [PMID: 30843118 PMCID: PMC6403267 DOI: 10.1186/s40708-019-0096-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Enhanced resolution of 7 T magnetic resonance imaging (MRI) scanners has considerably advanced our knowledge of structure and function in human and animal brains. Post-industrialized countries are particularly prone to an ever-increasing number of ageing individuals and ageing-associated neurodegenerative diseases. Neurodegenerative diseases are associated with volume loss in the affected brain. MRI diagnoses and monitoring of subtle volume changes in the ageing/diseased brains have the potential to become standard diagnostic tools. Even with the superior resolution of 7 T MRI scanners, the microstructural changes comprising cell types, cell numbers, and cellular processes, are still undetectable. Knowledge of origin, nature, and progression for microstructural changes are necessary to understand pathogenetic stages in the relentless neurodegenerative diseases, as well as to develop therapeutic tools that delay or stop neurodegenerative processes at their earliest stage. We illustrate the gap in resolution by comparing the identical regions of the post-mortem in situ 7 T MR images (virtual autopsy or virtopsy) with the histological observations in serial sections through the same brain. We also described the protocols and limitations associated with these comparisons, as well as the necessity of supercomputers and data management for "Big data". Analysis of neuron and/or glial number by using a body of mathematical tools and guidelines (stereology) is time-consuming, cumbersome, and still restricted to trained human investigators. Development of tools based on machine learning (ML) and artificial intelligence (AI) could considerably accelerate studies on localization, onset, and progression of neuron loss. Finally, these observations could disentangle the mechanisms of volume loss into stages of reversible atrophy and/or irreversible fatal cell death. This AI- and ML-based cooperation between virtopsy and histology could bridge the present gap between virtual reality and neuropathology. It could also culminate in the creation of an imaging-associated comprehensive database. This database would include genetic, clinical, epidemiological, and technical aspects that could help to alleviate or even stop the adverse effects of neurodegenerative diseases on affected individuals, their families, and society.
Collapse
Affiliation(s)
- Shane O'Sullivan
- Department of Pathology, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil.
| | - Helmut Heinsen
- Department of Pathology, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil.,Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany.,Institute of Radiology, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lea Tenenholz Grinberg
- Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany.,Aging Brain Project, Department of Pathology, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil.,Albert Einstein Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Leila Chimelli
- Laboratory of Neuropathology, State Institute of Brain, Rio de Janeiro, Brazil
| | - Edson Amaro
- Institute of Radiology, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Paulo Hilário do Nascimento Saldiva
- Department of Pathology, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil.,Institute of Advanced Studies, Universidade de Sao Paulo, São Paulo, Brazil
| | - Fleur Jeanquartier
- Holzinger Group, Institute for Medical Informatics and Statistics, Medical University of Graz, Graz, Austria
| | - Claire Jean-Quartier
- Holzinger Group, Institute for Medical Informatics and Statistics, Medical University of Graz, Graz, Austria
| | | | - Mohammed Imran Sajid
- Department of Upper GI Surgery, Wirral University Teaching Hospital, Birkenhead, United Kingdom
| | - Andreas Holzinger
- Holzinger Group, Institute for Medical Informatics and Statistics, Medical University of Graz, Graz, Austria
| |
Collapse
|
27
|
Sébille SB, Rolland AS, Welter ML, Bardinet E, Santin MD. Post mortem high resolution diffusion MRI for large specimen imaging at 11.7 T with 3D segmented echo-planar imaging. J Neurosci Methods 2019; 311:222-234. [PMID: 30321565 DOI: 10.1016/j.jneumeth.2018.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Diffusion weighted imaging (DWI) is the only in vivo technique allowing for the mapping of tissue fiber architecture. Post mortem DWI is an increasingly popular method, since longer acquisition times (compared to in vivo) allow higher spatial and angular resolutions to be achieved. However, DWI protocols must be adapted to post mortem tissue (e.g., tuning acquisition parameters to account for changes in T1/T2). New method: In this work, we developed a framework to obtain high quality diffusion weighted images on post mortem large samples by using a combination of fast imaging with 3D diffusion-weighted segmented EPI (3D-DW seg-EPI), Gadolinium soaking and data denoising. Analyses including tractography were used to check the quality of the acquired data, including a comparison with 3D-DW SE acquisitions. Comparison with existing method: Effects on diffusion data of each of the components of the framework were tested: 3D-DW seg-EPI versus 3D-DW SE EPI; with and without data denoising; with and without Gd-soaking. CONCLUSIONS Our study demonstrated the feasibility of analysing anatomical connectivity using diffusion imaging of a post mortem macaque brain with a 3D-DW seg-EPI sequence acquired at ultra-high field. The combination of high angular and spatial resolution DWI with Gd-soaking and denoising provided data allowing us to perform diffusion tractography with results very similar to those obtained with a 3D-DW SE acquisition (with shorter acquisition times: 222 h versus 37 h for 3D-DW seg-EPI).
Collapse
Affiliation(s)
- Sophie Bernadette Sébille
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France
| | - Anne-Sophie Rolland
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France
| | - Marie-Laure Welter
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France
| | - Eric Bardinet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France
| | - Mathieu David Santin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France.
| |
Collapse
|
28
|
Alkemade A, Groot JM, Forstmann BU. Do We Need a Human post mortem Whole-Brain Anatomical Ground Truth in in vivo Magnetic Resonance Imaging? Front Neuroanat 2018; 12:110. [PMID: 30568580 PMCID: PMC6290065 DOI: 10.3389/fnana.2018.00110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023] Open
Abstract
Non-invasive in vivo neuroimaging techniques provide a wide array of possibilities to study human brain function. A number of approaches are available that improve our understanding of the anatomical location of brain activation patterns, including the development of probabilistic conversion tools to register individual in vivo data to population based neuroanatomical templates. Two elegant examples were published by Horn et al. (2017) in which a method was described to warp DBS electrode coordinates, and histological data to MNI-space (Ewert et al., 2017). The conversion of individual brain scans to a standard space is done assuming that individual anatomical scans provide a reliable image of the underlying neuroanatomy. It is unclear to what extent spatial distortions related to tissue properties, or MRI artifacts exist in these scans. Therefore, the question rises whether the anatomical information from the individual scans can be considered a real ground truth. To accommodate the knowledge-gap as a result of limited anatomical information, generative brain models have been developed circumventing these challenges through the application of assumption sets without recourse to any ground truth. We would like to argue that, although these efforts are valuable, the definition of an anatomical ground truth is preferred. Its definition requires a system in which non-invasive approaches can be validated using invasive methods of investigation. We argue that the application of post mortem MRI studies in combination with microscopy analyses brings an anatomical ground truth for the human brain within reach, which is of importance for all research within the human in vivo neuroimaging field.
Collapse
Affiliation(s)
- Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| | - Josephine M Groot
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| | - Birte U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Dusek P, Madai VI, Huelnhagen T, Bahn E, Matej R, Sobesky J, Niendorf T, Acosta-Cabronero J, Wuerfel J. The choice of embedding media affects image quality, tissue R 2 * , and susceptibility behaviors in post-mortem brain MR microscopy at 7.0T. Magn Reson Med 2018; 81:2688-2701. [PMID: 30506939 DOI: 10.1002/mrm.27595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The quality and precision of post-mortem MRI microscopy may vary depending on the embedding medium used. To investigate this, our study evaluated the impact of 5 widely used media on: (1) image quality, (2) contrast of high spatial resolution gradient-echo (T1 and T2 * -weighted) MR images, (3) effective transverse relaxation rate (R2 * ), and (4) quantitative susceptibility measurements (QSM) of post-mortem brain specimens. METHODS Five formaldehyde-fixed brain slices were scanned using 7.0T MRI in: (1) formaldehyde solution (formalin), (2) phosphate-buffered saline (PBS), (3) deuterium oxide (D2 O), (4) perfluoropolyether (Galden), and (5) agarose gel. SNR and contrast-to-noise ratii (SNR/CNR) were calculated for cortex/white matter (WM) and basal ganglia/WM regions. In addition, median R2 * and QSM values were extracted from caudate nucleus, putamen, globus pallidus, WM, and cortical regions. RESULTS PBS, Galden, and agarose returned higher SNR/CNR compared to formalin and D2 O. Formalin fixation, and its use as embedding medium for scanning, increased tissue R2 * . Imaging with agarose, D2 O, and Galden returned lower R2 * values than PBS (and formalin). No major QSM offsets were observed, although spatial variance was increased (with respect to R2 * behaviors) for formalin and agarose. CONCLUSIONS Embedding media affect gradient-echo image quality, R2 * , and QSM in differing ways. In this study, PBS embedding was identified as the most stable experimental setup, although by a small margin. Agarose and Galden were preferred to formalin or D2 O embedding. Formalin significantly increased R2 * causing noisier data and increased QSM variance.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic.,Department of Radiology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Vince Istvan Madai
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Erik Bahn
- Institute of Neuropathology, University Medicine Göttingen, Göttingen, Germany
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Thomayer Hospital, Praha, Czech Republic.,Department of Pathology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Jan Sobesky
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julio Acosta-Cabronero
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité-Universitaetsmedizin, Berlin, Germany.,Medical Imaging Analysis Center AG, Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Switzerland
| |
Collapse
|
30
|
Blockade of synaptic activity in the neostriatum and activation of striatal efferent pathways produce opposite effects on panic attack-like defensive behaviours evoked by GABAergic disinhibition in the deep layers of the superior colliculus. Physiol Behav 2018; 196:104-111. [DOI: 10.1016/j.physbeh.2018.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
|
31
|
Cortical Potentials Evoked by Subthalamic Stimulation Demonstrate a Short Latency Hyperdirect Pathway in Humans. J Neurosci 2018; 38:9129-9141. [PMID: 30201770 DOI: 10.1523/jneurosci.1327-18.2018] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022] Open
Abstract
A monosynaptic projection from the cortex to the subthalamic nucleus is thought to have an important role in basal ganglia function and in the mechanism of therapeutic subthalamic deep-brain stimulation, but in humans the evidence for its existence is limited. We sought physiological confirmation of the cortico-subthalamic hyperdirect pathway using invasive recording techniques in patients with Parkinson's disease (9 men, 1 woman). We measured sensorimotor cortical evoked potentials using a temporary subdural strip electrode in response to low-frequency deep-brain stimulation in patients undergoing awake subthalamic or pallidal lead implantations. Evoked potentials were grouped into very short latency (<2 ms), short latency (2-10 ms), and long latency (10-100 ms) from the onset of the stimulus pulse. Subthalamic and pallidal stimulation resulted in very short-latency evoked potentials at 1.5 ms in the primary motor cortex accompanied by EMG-evoked potentials consistent with corticospinal tract activation. Subthalamic, but not pallidal stimulation, resulted in three short-latency evoked potentials at 2.8, 5.8, and 7.7 ms in a widespread cortical distribution, consistent with antidromic activation of the hyperdirect pathway. Long-latency potentials were evoked by both targets, with subthalamic responses lagging pallidal responses by 10-20 ms, consistent with orthodromic activation of the thalamocortical pathway. The amplitude of the first short-latency evoked potential was predictive of the chronic therapeutic stimulation contact.SIGNIFICANCE STATEMENT This is the first physiological demonstration of the corticosubthalamic hyperdirect pathway and its topography at high spatial resolution in humans. We studied cortical potentials evoked by deep-brain stimulation in patients with Parkinson's disease undergoing awake lead implantation surgery. Subthalamic stimulation resulted in multiple short-latency responses consistent with activation of hyperdirect pathway, whereas no such response was present during pallidal stimulation. We contrast these findings with very short latency, direct corticospinal tract activations, and long-latency responses evoked through polysynaptic orthodromic projections. These findings underscore the importance of incorporating the hyperdirect pathway into models of human basal ganglia function.
Collapse
|
32
|
Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU. Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging. Brain Topogr 2018; 31:513-545. [PMID: 29497874 PMCID: PMC5999196 DOI: 10.1007/s10548-018-0638-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
With the recent increased availability of ultra-high field (UHF) magnetic resonance imaging (MRI), substantial progress has been made in visualizing the human brain, which can now be done in extraordinary detail. This review provides an extensive overview of the use of UHF MRI in visualizing the human subcortex for both healthy and patient populations. The high inter-subject variability in size and location of subcortical structures limits the usability of atlases in the midbrain. Fortunately, the combined results of this review indicate that a large number of subcortical areas can be visualized in individual space using UHF MRI. Current limitations and potential solutions of UHF MRI for visualizing the subcortex are also discussed.
Collapse
Affiliation(s)
- M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands.
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - B R Isaacs
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - R Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Middlebrooks EH, Tuna IS, Grewal SS, Almeida L, Heckman MG, Lesser ER, Foote KD, Okun MS, Holanda VM. Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease. AJNR Am J Neuroradiol 2018; 39:1127-1134. [PMID: 29700048 DOI: 10.3174/ajnr.a5641] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/24/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Although globus pallidus internus deep brain stimulation is a widely accepted treatment for Parkinson disease, there is persistent variability in outcomes that is not yet fully understood. In this pilot study, we aimed to investigate the potential role of globus pallidus internus segmentation using probabilistic tractography as a supplement to traditional targeting methods. MATERIALS AND METHODS Eleven patients undergoing globus pallidus internus deep brain stimulation were included in this retrospective analysis. Using multidirection diffusion-weighted MR imaging, we performed probabilistic tractography at all individual globus pallidus internus voxels. Each globus pallidus internus voxel was then assigned to the 1 ROI with the greatest number of propagated paths. On the basis of deep brain stimulation programming settings, the volume of tissue activated was generated for each patient using a finite element method solution. For each patient, the volume of tissue activated within each of the 10 segmented globus pallidus internus regions was calculated and examined for association with a change in the Unified Parkinson Disease Rating Scale, Part III score before and after treatment. RESULTS Increasing volume of tissue activated was most strongly correlated with a change in the Unified Parkinson Disease Rating Scale, Part III score for the primary motor region (Spearman r = 0.74, P = .010), followed by the supplementary motor area/premotor cortex (Spearman r = 0.47, P = .15). CONCLUSIONS In this pilot study, we assessed a novel method of segmentation of the globus pallidus internus based on probabilistic tractography as a supplement to traditional targeting methods. Our results suggest that our method may be an independent predictor of deep brain stimulation outcome, and evaluation of a larger cohort or prospective study is warranted to validate these findings.
Collapse
Affiliation(s)
| | - I S Tuna
- Departments of Radiology (I.S.T.)
| | | | | | - M G Heckman
- Division of Biomedical Statistics and Informatics (M.G.H., E.R.L.), Mayo Clinic, Jacksonville, Florida
| | - E R Lesser
- Division of Biomedical Statistics and Informatics (M.G.H., E.R.L.), Mayo Clinic, Jacksonville, Florida
| | - K D Foote
- Neurosurgery (K.D.F.), University of Florida, Gainesville, Florida
| | | | - V M Holanda
- Center of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Metzger FL, Auer T, Helms G, Paulus W, Frahm J, Sommer M, Neef NE. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering. Brain Struct Funct 2017; 223:165-182. [PMID: 28741037 PMCID: PMC5772149 DOI: 10.1007/s00429-017-1476-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/07/2017] [Indexed: 11/29/2022]
Abstract
Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.
Collapse
Affiliation(s)
- F Luise Metzger
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Tibor Auer
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.,MRC Cognition and Brain Sciences Unit, Cambridge, UK.,Department of Psychology, Royal Holloway, University of London, Egham, UK
| | - Gunther Helms
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Nicole E Neef
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany. .,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| |
Collapse
|
35
|
Lehericy S, Vaillancourt DE, Seppi K, Monchi O, Rektorova I, Antonini A, McKeown MJ, Masellis M, Berg D, Rowe JB, Lewis SJG, Williams-Gray CH, Tessitore A, Siebner HR. The role of high-field magnetic resonance imaging in parkinsonian disorders: Pushing the boundaries forward. Mov Disord 2017; 32:510-525. [PMID: 28370449 DOI: 10.1002/mds.26968] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 12/28/2022] Open
Abstract
Historically, magnetic resonance imaging (MRI) has contributed little to the study of Parkinson's disease (PD), but modern MRI approaches have unveiled several complementary markers that are useful for research and clinical applications. Iron- and neuromelanin-sensitive MRI detect qualitative changes in the substantia nigra. Quantitative MRI markers can be derived from diffusion weighted and iron-sensitive imaging or volumetry. Functional brain alterations at rest or during task performance have been captured with functional and arterial spin labeling perfusion MRI. These markers are useful for the diagnosis of PD and atypical parkinsonism, to track disease progression from the premotor stages of these diseases and to better understand the neurobiological basis of clinical deficits. A current research goal using MRI is to generate time-dependent models of the evolution of PD biomarkers that can help understand neurodegeneration and provide reliable markers for therapeutic trials. This article reviews recent advances in MRI biomarker research at high-field (3T) and ultra high field-imaging (7T) in PD and atypical parkinsonism. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stéphane Lehericy
- Institut du Cerveau et de la Moelle épinière - ICM, Centre de NeuroImagerie de Recherche - CENIR, Sorbonne Universités, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Department of Neurology and Centre for Movement Disorders and Neurorestoration, Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria and Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Oury Monchi
- Department of Clinical Neurosciences, Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Irena Rektorova
- First Department of Neurology, School of Medicine, St. Anne's University Hospital, Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, istituto di ricovero e cura a carattere scientifico (IRCCS) Hospital San Camillo, Venice and Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Martin J McKeown
- Pacific Parkinson's Research Center, Department of Medicine (Neurology), University of British Columbia Vancouver, BC, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University of Kiel and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University, and Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Department of Neurology, Copenhagen University Hospital Bispebjerg, Hvidovre, Denmark
| | | |
Collapse
|