1
|
da Costa Neto IR, do Amaral Junior FL, da Silva Arruda BF, Castro MML, Carvalho Chaves de Siqueira Mendes FD, Anthony DC, de Oliveira Brites DMT, Diniz CWP, Sosthenes MCK. Impact of masticatory activity and rehabilitation on astrocyte morphology across the molecular layer of the dentate gyrus: Insights from the outer, medial, and inner sublayers and their relationship with spatial learning and memory. Ann Anat 2024; 258:152356. [PMID: 39608517 DOI: 10.1016/j.aanat.2024.152356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
The dentate gyrus plays a crucial role in learning and spatial memory, particularly in its middle third molecular layer, which receives the primary afferent input via the medial perforant path. Interestingly, changes in masticatory activity are described to affect this region with visible astrogliosis, release of pro-inflammatory cytokines and oxidative stress, affecting synaptic physiology, and cognition. This study aimed to investigate the impact of altered masticatory activity on spatial memory in young Swiss albino mice, correlating these effects with morphological changes in astrocytes. The mice were divided into three groups: Hard diet with pellets (HD), hard diet/soft diet (HD/SD, reduced masticatory activity), and HD/SD/HD (rehabilitated). The Morris water maze test was used to measure escape latency, while three-dimensional microscopic reconstruction methods provided morphometric data on the astrocytes. Hierarchical clustering analysis validated the existence of four morphological subtypes with decreasing complexity (AST1, AST2, AST3, and AST4), in the outer, middle, and inner thirds of the dentate gyrus molecular layer. Changes in masticatory activity affected the number and distribution of astrocytes subtypes excepting AST3 in the middle third layer. Canonical discriminant function analysis indicated that complexity was the variable most influencing cluster formation. Correlation tests between complexity and escape latency for each animal group showed a significant correlation with a large effect size of 60 % [Pearson's R: 0.605, p < 0.001] in the HD group in the middle third, which was disrupted by altered masticatory activity. AST3 morphotype in the middle third showed a linear correlation with learning and spatial memory functions in the HD group [Pearson's R: 0.624, p < 0.001] that disappeared with a reduction in masticatory activity, and nor restored by diet rehabilitation. This finding was not observed for inner and outer layers, supporting the contribution of middle third AST3 to learning and spatial memory. Group comparison tests also revealed that diet differentially impacts astrocyte subpopulations on each third of the dentate gyrus molecular layer. Data validate the influence of the masticatory activity on astrocyte complexity and suggest the existence of AST3 association with spatial memory and learning tasks in young female mice. Further research on the underlying mechanisms of these relationships is essential to identify potential therapeutic targets for cognitive disorders and to develop effective interventions to preserve cognitive function.
Collapse
Affiliation(s)
- Ivaniro Rodrigues da Costa Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil; Universidade da Amazônia, Ananindeua, PA 67113-901, Brazil
| | - Fabio Leite do Amaral Junior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Bernardo Freire da Silva Arruda
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Micaele Maria Lopes Castro
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil; Curso de Medicina, Centro Universitário do Estado do Pará, Belém, PA 66613-903, Brazil
| | - Daniel Clive Anthony
- University of Oxford, Laboratory of Experimental Neuropathology, Department of Pharmacology, Oxford OX13QT, United Kingdom
| | - Dora Maria Tuna de Oliveira Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil.
| |
Collapse
|
2
|
Delgado-García LM, Ojalvo-Sanz AC, Nakamura TKE, Martín-López E, Porcionatto M, Lopez-Mascaraque L. Dissecting reactive astrocyte responses: lineage tracing and morphology-based clustering. Biol Res 2024; 57:54. [PMID: 39143594 PMCID: PMC11323641 DOI: 10.1186/s40659-024-00532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Brain damage triggers diverse cellular and molecular events, with astrocytes playing a crucial role in activating local neuroprotective and reparative signaling within damaged neuronal circuits. Here, we investigated reactive astrocytes using a multidimensional approach to categorize their responses into different subtypes based on morphology. This approach utilized the StarTrack lineage tracer, single-cell imaging reconstruction and multivariate data analysis. Our findings identified three profiles of reactive astrocyte responses, categorized by their effects on cell size- and shape- related morphological parameters: "moderate", "strong," and "very strong". We also examined the heterogeneity of astrocyte reactivity, focusing on spatial and clonal distribution. Our research revealed a notable enrichment of protoplasmic and fibrous astrocytes within the "strong" and "very strong" response subtypes. Overall, our study contributes to a better understanding of astrocyte heterogeneity in response to an injury. By characterizing the diverse reactive responses among astrocyte subpopulations, we provide insights that could guide future research aimed at identifying novel therapeutic targets to mitigate brain damage and promote neural repair.
Collapse
Affiliation(s)
- Lina M Delgado-García
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain
- Departamento de Bioquímica, Universidade Federal de Sao Paulo UNIFESP, Rua Pedro de Toledo 669, Sao Paulo, 04039032, Brazil
| | - Ana C Ojalvo-Sanz
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain
| | - Thabatta K E Nakamura
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain
- Departamento de Bioquímica, Universidade Federal de Sao Paulo UNIFESP, Rua Pedro de Toledo 669, Sao Paulo, 04039032, Brazil
| | - Eduardo Martín-López
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain
- Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Marimelia Porcionatto
- Departamento de Bioquímica, Universidade Federal de Sao Paulo UNIFESP, Rua Pedro de Toledo 669, Sao Paulo, 04039032, Brazil
| | - Laura Lopez-Mascaraque
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal-CSIC, Avenida Dr. Arce 37, 28002, Madrid, Spain.
| |
Collapse
|
3
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Lin SS, Zhou B, Chen BJ, Jiang RT, Li B, Illes P, Semyanov A, Tang Y, Verkhratsky A. Electroacupuncture prevents astrocyte atrophy to alleviate depression. Cell Death Dis 2023; 14:343. [PMID: 37248211 DOI: 10.1038/s41419-023-05839-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Astrocyte atrophy is the main histopathological hallmark of major depressive disorder (MDD) in humans and in animal models of depression. Here we show that electroacupuncture prevents astrocyte atrophy in the prefrontal cortex and alleviates depressive-like behaviour in mice subjected to chronic unpredictable mild stress (CUMS). Treatment of mice with CUMS induced depressive-like phenotypes as confirmed by sucrose preference test, tail suspension test, and forced swimming test. These behavioural changes were paralleled with morphological atrophy of astrocytes in the prefrontal cortex, revealed by analysis of 3D reconstructions of confocal Z-stack images of mCherry expressing astrocytes. This morphological atrophy was accompanied by a decrease in the expression of cytoskeletal linker Ezrin, associated with formation of astrocytic leaflets, which form astroglial synaptic cradle. Electroacupuncture at the acupoint ST36, as well as treatment with anti-depressant fluoxetine, prevented depressive-like behaviours, astrocytic atrophy, and down-regulation of astrocytic ezrin. In conclusion, our data further strengthen the notion of a primary role of astrocytic atrophy in depression and reveal astrocytes as cellular target for electroacupuncture in treatment of depressive disorders.
Collapse
Affiliation(s)
- Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bin Zhou
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anaesthesiology, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Bin-Jie Chen
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Ruo-Tian Jiang
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anaesthesiology, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, Jiaxing, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
5
|
Beltran-Lobo P, Reid MJ, Jimenez-Sanchez M, Verkhratsky A, Perez-Nievas BG, Noble W. Astrocyte adaptation in Alzheimer's disease: a focus on astrocytic P2X7R. Essays Biochem 2023; 67:119-130. [PMID: 36449279 PMCID: PMC10011405 DOI: 10.1042/ebc20220079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022]
Abstract
Astrocytes are key homeostatic and defensive cells of the central nervous system (CNS). They undertake numerous functions during development and in adulthood to support and protect the brain through finely regulated communication with other cellular elements of the nervous tissue. In Alzheimer's disease (AD), astrocytes undergo heterogeneous morphological, molecular and functional alterations represented by reactive remodelling, asthenia and loss of function. Reactive astrocytes closely associate with amyloid β (Aβ) plaques and neurofibrillary tangles in advanced AD. The specific contribution of astrocytes to AD could potentially evolve along the disease process and includes alterations in their signalling, interactions with pathological protein aggregates, metabolic and synaptic impairments. In this review, we focus on the purinergic receptor, P2X7R, and discuss the evidence that P2X7R activation contributes to altered astrocyte functions in AD. Expression of P2X7R is increased in AD brain relative to non-demented controls, and animal studies have shown that P2X7R antagonism improves cognitive and synaptic impairments in models of amyloidosis and tauopathy. While P2X7R activation can induce inflammatory signalling pathways, particularly in microglia, we focus here specifically on the contributions of astrocytic P2X7R to synaptic changes and protein aggregate clearance in AD, highlighting cell-specific roles of this purinoceptor activation that could be targeted to slow disease progression.
Collapse
Affiliation(s)
- Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
- Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Beatriz G Perez-Nievas
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| |
Collapse
|
6
|
Abstract
The evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed of electrically excitable neuronal networks connected by chemical synapses and nonexcitable glial cells that provide for homeostasis and defense. The evolution of neuroglia began with the emergence of the centralized nervous system and proceeded through a continuous increase in their complexity. In the primate brain, especially in the brain of humans, the astrocyte lineage is exceedingly complex, with the emergence of new types of astroglial cells possibly involved in interlayer communication and integration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Amaia M Arranz
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Katarzyna Ciuba
- Dioscuri Centre of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Pękowska
- Dioscuri Centre of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
de Almeida Miranda D, Araripe J, de Morais Magalhães NG, de Siqueira LS, de Abreu CC, Pereira PDC, Henrique EP, da Silva Chira PAC, de Melo MAD, do Rêgo PS, Diniz DG, Sherry DF, Diniz CWP, Guerreiro-Diniz C. Shorebirds' Longer Migratory Distances Are Associated With Larger ADCYAP1 Microsatellites and Greater Morphological Complexity of Hippocampal Astrocytes. Front Psychol 2022; 12:784372. [PMID: 35185684 PMCID: PMC8855117 DOI: 10.3389/fpsyg.2021.784372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
For the epic journey of autumn migration, long-distance migratory birds use innate and learned information and follow strict schedules imposed by genetic and epigenetic mechanisms, the details of which remain largely unknown. In addition, bird migration requires integrated action of different multisensory systems for learning and memory, and the hippocampus appears to be the integration center for this task. In previous studies we found that contrasting long-distance migratory flights differentially affected the morphological complexity of two types of hippocampus astrocytes. Recently, a significant association was found between the latitude of the reproductive site and the size of the ADCYAP1 allele in long distance migratory birds. We tested for correlations between astrocyte morphological complexity, migratory distances, and size of the ADCYAP1 allele in three long-distance migrant species of shorebird and one non-migrant. Significant differences among species were found in the number and morphological complexity of the astrocytes, as well as in the size of the microsatellites of the ADCYAP1 gene. We found significant associations between the size of the ADCYAP1 microsatellites, the migratory distances, and the degree of morphological complexity of the astrocytes. We suggest that associations between astrocyte number and morphological complexity, ADCYAP1 microsatellite size, and migratory behavior may be part of the adaptive response to the migratory process of shorebirds.
Collapse
Affiliation(s)
- Diego de Almeida Miranda
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil.,Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Juliana Araripe
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Nara G de Morais Magalhães
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Cintya Castro de Abreu
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Patrick Douglas Corrêa Pereira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Ediely Pereira Henrique
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Pedro Arthur Campos da Silva Chira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Mauro A D de Melo
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| |
Collapse
|
8
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
9
|
Plasticity in the hippocampal formation of shorebirds during the wintering period: Stereological analysis of parvalbumin neurons in Actitis macularius. Learn Behav 2021; 50:45-54. [PMID: 34244975 DOI: 10.3758/s13420-021-00473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/08/2022]
Abstract
The number of parvalbumin neurons can be modified by social, multisensory, and cognitive stimuli in both mammals and birds, but nothing is known about their plasticity in long-distance migratory shorebirds. Here, in the spotted sandpiper (Actitis macularius), we investigated the plasticity of parvalbumin neurons of two brain areas during this species' wintering period at a lower latitude. We compared individuals in a nonmigratory rest period (November-January) and premigration (May-July) period. We used parvalbumin as a marker for counting a subpopulation of inhibitory neurons in the hippocampal formation (HF), with the magnocellular nucleus of the tectal isthmus (IMC) as a control area. Because the HF is involved in learning and memory and social interaction and the IMC is essential for control of head, neck, and eye movements, we hypothesized that parvalbumin neurons would increase in the HF and remain unchanged in the IMC. We used an optical fractionator to estimate cell numbers. Compared with the nonmigratory rest birds, parvalbumin neuron count estimates in the premigration birds increased significantly in the HF but remained unchanged in IMC. We suggest that the greater number of parvalbuminergic neurons in the HF of A. macularius in the premigration period represents adaptive circuitry changes involved in the migration back to reproductive niches in the northern hemisphere.
Collapse
|
10
|
Augusto-Oliveira M, Arrifano GP, Takeda PY, Lopes-Araújo A, Santos-Sacramento L, Anthony DC, Verkhratsky A, Crespo-Lopez ME. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev 2020; 118:331-357. [DOI: 10.1016/j.neubiorev.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
11
|
da Costa ER, Henrique EP, da Silva JB, Pereira PDC, de Abreu CC, Fernandes TN, Magalhães NGM, de Jesus Falcão da Silva A, Guerreiro LCF, Diniz CG, Diniz CWP, Diniz DG. Changes in hippocampal astrocyte morphology of Ruddy turnstone (Arenaria interpres) during the wintering period at the mangroves of Amazon River estuary. J Chem Neuroanat 2020; 108:101805. [PMID: 32505650 DOI: 10.1016/j.jchemneu.2020.101805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 11/15/2022]
Abstract
Astrocytes are essential for lipid neuronal metabolism in long-distance uninterrupted migratory flights, when glucose is not available as the main source of energy. We previously demonstrated in Calidris pusilla that after uninterrupted 5 days transatlantic flight, astrocytes shrink and reduce its number in the hippocampal formation. Here we shifted our attention to the wintering period and tested the hypothesis that hippocampal astrocyte morphology of A interpres will change as the wintering period progresses towards the premigration window. To that end we used Arenaria interpres, which also crosses the Atlantic Ocean and reaches the mangroves of the Amazon River estuary for wintering. Birds were captured in September/October (closer to the arrival in the coast of Bragança, Para, Brazil for wintering) and in April/May (closer to the departure towards the breeding sites) and had their brains processed for selective GFAP-astrocyte immunolabeling. Three-dimensional reconstructions of the immunostained astrocytes were performed and morphological classification was done based on hierarchical cluster and discriminant analysis of multimodal morphometric features. We found two morphological phenotypes of astrocytes in the newcomers which differentially increased its morphological complexities as wintering period progresses towards the pre-migration window. Taken together, our findings demonstrate that the long-distance non-stop flight and wintering period differentially affected the two astrocytes morphotypes, suggesting distinct physiological roles for these cells. We suggest that morphological changes during the wintering period, may be part of the adaptive plasticity of the local hippocampal circuits of A. interpres in preparation for the long journey back to their breeding sites in the north hemisphere.
Collapse
Affiliation(s)
- Emanuel Ramos da Costa
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brazil
| | - Ediely Pereira Henrique
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Rua da Escola Agrícola S/N, Vila Sinhá, CEP: 68.600-000, Bragança, Pará, Brazil
| | - João Batista da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Rua da Escola Agrícola S/N, Vila Sinhá, CEP: 68.600-000, Bragança, Pará, Brazil
| | - Patrick Douglas Corrêa Pereira
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Rua da Escola Agrícola S/N, Vila Sinhá, CEP: 68.600-000, Bragança, Pará, Brazil
| | - Cintya Castro de Abreu
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Rua da Escola Agrícola S/N, Vila Sinhá, CEP: 68.600-000, Bragança, Pará, Brazil
| | - Taiany Nogueira Fernandes
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Rua da Escola Agrícola S/N, Vila Sinhá, CEP: 68.600-000, Bragança, Pará, Brazil
| | - Nara Gyzely Morais Magalhães
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Rua da Escola Agrícola S/N, Vila Sinhá, CEP: 68.600-000, Bragança, Pará, Brazil
| | - Anderson de Jesus Falcão da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Rua da Escola Agrícola S/N, Vila Sinhá, CEP: 68.600-000, Bragança, Pará, Brazil
| | - Luma Cristina Ferreira Guerreiro
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brazil
| | - Cristovam Guerreiro Diniz
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Rua da Escola Agrícola S/N, Vila Sinhá, CEP: 68.600-000, Bragança, Pará, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brazil.
| | - Daniel Guerreiro Diniz
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brazil; Instituto Evandro Chagas, Laboratório de Microscopia Eletrônica, Avenida Almirante Barroso, 492, Marco, CEP: 66.093-020, Belém, Pará, Brazil
| |
Collapse
|
12
|
Henrique EP, Oliveira MA, Paulo DC, Pereira PDC, Dias C, Siqueira LS, Lima CM, Miranda DDA, Rego PS, Araripe J, Melo MAD, Diniz DG, Morais Magalhães NG, Sherry DF, Picanço Diniz CW, Diniz CG. Contrasting migratory journeys and changes in hippocampal astrocyte morphology in shorebirds. Eur J Neurosci 2020; 54:5687-5704. [DOI: 10.1111/ejn.14781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/26/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Marcus Augusto Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Dario Carvalho Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Patrick Douglas Corrêa Pereira
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Cleyssian Dias
- Curso de Pós‐Graduação em Zoologia Museu Paraense Emílio Goeldi Universidade Federal do Pará Belém Pará Brazil
| | - Lucas Silva Siqueira
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Camila Mendes Lima
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Diego de Almeida Miranda
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Péricles Sena Rego
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Pará Brazil
| | - Juliana Araripe
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Pará Brazil
| | - Mauro André Damasceno Melo
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
- Instituto Evandro Chagas Laboratório de Miscroscopia Eletrônica Belém Pará Brazil
| | - Nara Gyzely Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - David Francis Sherry
- Department of Psychology Advanced Facility for Avian Research University of Western Ontario London ON Canada
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| |
Collapse
|
13
|
Sosthenes MCK, Diniz DG, Roodselaar J, Abadie-Guedes R, de Siqueira Mendes FDCC, Fernandes TN, Bittencourt JC, Diniz CWP, Anthony DC, Guedes RCA. Stereological Analysis of Early Gene Expression Using Egr-1 Immunolabeling After Spreading Depression in the Rat Somatosensory Cortex. Front Neurosci 2019; 13:1020. [PMID: 31607855 PMCID: PMC6774394 DOI: 10.3389/fnins.2019.01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Early growth response-1 (Egr-1), defined as a zinc finger transcription factor, is an upstream master switch of the inflammatory response, and its expression can be used to investigate the spatial and temporal extent of inflammatory changes in the brain. Cortical spreading depression (CSD) is characterized as a slowly propagating (2-5 mm/min) depolarization wave through neurons and astrocytes in humans that contributes to migraines and possibly to other brain pathologies. In rodents, CSD can be induced experimentally, which involves unilateral depolarization that is associated with microglial and astrocyte responses. The impact of CSD on structures beyond the affected hemisphere has not been explored. Here, we used an optical fractionator method to investigate potential correlations between the number of and period of the eletrophysiologic record of CSD phenomena and Egr-1 expression in ipsilateral and contralateral hemispheres. CSD was elicited by the restricted application of a 2% KCl solution over the left premotor cortex. Electrophysiological events were recorded using a pair of Ag/AgCl agar-Ringer electrodes for 2 or 6 h. An optical fractionator was applied to count the Egr-1 positive cells. We found that CSD increased Egr-1 expression in a time- and event-dependent manner in the ipsilateral/left hemisphere. Although CSD did not cross the midline, multiple CSD inductions were associated with an increased number of Egr-1 positive cells in the contralateral/right hemisphere. Thus, repeated CSD waves may have far reaching effects that are more global than previously considered possible. The mechanism of contralateral expression is unknown, but we speculate that callosal projections from the depolarized hemisphere may be related to this phenomenon.
Collapse
Affiliation(s)
- Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom.,Laboratório de Neuroanatomia Química, Departamento de Anatomia, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Jay Roodselaar
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Ricardo Abadie-Guedes
- Laboratório de Fisiologia da Nutrição Naíde Teodósio, Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Curso de Medicina, Centro Universitário do Estado do Pará, Belém, Brazil
| | - Taiany Nogueira Fernandes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Jackson Cioni Bittencourt
- Laboratório de Neuroanatomia Química, Departamento de Anatomia, Universidade de São Paulo, São Paulo, Brazil.,Núcleo de Neurociências e Comportamento, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rubem Carlos Araújo Guedes
- Laboratório de Fisiologia da Nutrição Naíde Teodósio, Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
14
|
Mendes de Lima C, Douglas Corrêa Pereira P, Pereira Henrique E, Augusto de Oliveira M, Carvalho Paulo D, Silva de Siqueira L, Guerreiro Diniz D, Almeida Miranda D, André Damasceno de Melo M, Gyzely de Morais Magalhães N, Francis Sherry D, Wanderley Picanço Diniz C, Guerreiro Diniz C. Differential Change in Hippocampal Radial Astrocytes and Neurogenesis in Shorebirds With Contrasting Migratory Routes. Front Neuroanat 2019; 13:82. [PMID: 31680881 PMCID: PMC6798042 DOI: 10.3389/fnana.2019.00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
Little is known about environmental influences on radial glia-like (RGL) α cells (radial astrocytes) and their relation to neurogenesis. Because radial glia is involved in adult neurogenesis and astrogenesis, we investigated this association in two migratory shorebird species that complete their autumnal migration using contrasting strategies. Before their flights to South America, the birds stop over at the Bay of Fundy in Canada. From there, the semipalmated sandpiper (Calidris pusilla) crosses the Atlantic Ocean in a non-stop 5-day flight, whereas the semipalmated plover (Charadrius semipalmatus) flies primarily overland with stopovers for rest and feeding. From the hierarchical cluster analysis of multimodal morphometric features, followed by the discriminant analysis, the radial astrocytes were classified into two main morphotypes, Type I and Type II. After migration, we detected differential changes in the morphology of these cells that were more intense in Type I than in Type II in both species. We also compared the number of doublecortin (DCX)-immunolabeled neurons with morphometric features of radial glial-like α cells in the hippocampal V region between C. pusilla and C. semipalmatus before and after autumn migration. Compared to migrating birds, the convex hull surface area of radial astrocytes increased significantly in wintering individuals in both C. semipalmatus and C. pusilla. Although to a different extent we found a strong correlation between the increase in the convex hull surface area and the increase in the total number of DCX immunostained neurons in both species. Despite phylogenetic differences, it is of interest to note that the increased morphological complexity of radial astrocytes in C. semipalmatus coincides with the fact that during the migratory process over the continent, the visuospatial environment changes more intensely than that associated with migration over Atlantic. The migratory flight of the semipalmated plover, with stopovers for feeding and rest, vs. the non-stop flight of the semipalmated sandpiper may differentially affect radial astrocyte morphology and neurogenesis.
Collapse
Affiliation(s)
- Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Patrick Douglas Corrêa Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Dario Carvalho Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Lucas Silva de Siqueira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Diego Almeida Miranda
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Mauro André Damasceno de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Nara Gyzely de Morais Magalhães
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - David Francis Sherry
- Advanced Facility for Avian Research, Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| |
Collapse
|