1
|
Bernardo HT, Lodetti G, de Farias ACS, de Pieri Pickler K, Baldin SL, Dondossola ER, Rico EP. Naltrexone Alters Neurochemical and Behavioral Parameters in a Zebrafish Model of Repeated Alcohol Exposure. Neurochem Res 2025; 50:97. [PMID: 39920352 DOI: 10.1007/s11064-025-04349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Between the neurotransmission systems modulated by alcohol, the opioid system has been receiving attention in studies that seek to understand its relationship to the effects of addictive substances and different neuropsychiatric disorders. The use of naltrexone stands out in determining the mechanisms of the opioid system, as it acts as an opioid antagonist and consequently generates neurochemical responses. This study aimed to evaluate the pharmacological modulation of opioids on behavioral and neurobiological aspects in adult zebrafish submitted to the protocol of repeated exposure to ethanol and treated with naltrexone. Opioid modulation using naltrexone has been shown to modulate anxiety-like behavior, presenting anxiolytic properties in isolation, in addition to reversing the anxiogenic effect of ethanol through the Novel tank and Light/dark test. Naltrexone increased serotonin and dopamine levels, while ethanol antagonized these effects. In contrast, the interaction between ethanol and naltrexone raised noradrenaline levels. Naltrexone altered glutamate levels, however, ethanol reversed it. Ethanol acted on glutamate transporters increasing their activities, while naltrexone treatment reduced activities. No significant results were found in the pro-oxidant parameters, however, ethanol reduced SOD activity while naltrexone reversed. The same occurred in CAT activity. Also, naltrexone up-regulated the expression of genes related to the dopaminergic, glutamatergic, and opioid systems. The genes used as markers of the inflammatory process and glial activity were modulated by ethanol and together with naltrexone, respectively. Taken together, our findings reinforce the importance of opioid signaling on biochemical and molecular bases related to neuropsychiatric behaviors and diseases, such as anxiety and substance dependence.
Collapse
Affiliation(s)
- Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
2
|
Hayashi S, Fujiuchi M, Oshiden M, Honda A, Kagawa N. Opioid receptor and dopaminergic gene expression increase in the brains of dominant medaka Oryzias latipes males after repeated fights. JOURNAL OF FISH BIOLOGY 2025; 106:564-574. [PMID: 39462145 DOI: 10.1111/jfb.15980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The central opioid system and dopaminergic activity in mammals play key roles in mediating social reward, impulsivity, cognition, decision making, and motivation for learning and social interactions. Repeated positive fighting experiences enhance the gene expression levels of μ-type opioid receptor (Mor), tyrosine hydroxylase (Th), an enzyme involved in dopamine synthesis, and dopamine receptor type 2 (D2r) in the reward-related brain regions of aggressive mice. However, it remains unclear whether the opioid system and dopaminergic activity are associated with repeated winning in fish. In this study, we investigated changes in the expression levels of Mor, Th1, and D2r in different regions of the brain of adult medaka Oryzias latipes males after intermittent and continuous fight for 3 days. When a pair of males was provided a fighting opportunity for 20 min per day, we noted that within the 3-day observation period, aggressive winning males showed significantly higher expression levels of Mor in telencephalon and diencephalon, Th1 in diencephalon, and D2r in telencephalon than subordinate losing males. However, no such differences in gene expression level were observed between winning and losing males in the 3-day continuous fight. Further, no differences were detected in the total number of aggressive actions among the winners from each fighting test. However, the total number of "chase" actions, with a stronger aggressiveness index, was higher for the repeated winning male in the three-time intermittent fight than for the winner in the 3-day continuous fight. These findings suggest that repeated intermittent winning experiences with strong aggressiveness could be perceived as a reward by O. latipes males.
Collapse
Affiliation(s)
- Suzuna Hayashi
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Miki Fujiuchi
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Mei Oshiden
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Akira Honda
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Nao Kagawa
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| |
Collapse
|
3
|
Wang L, Wang X, Liu C, Xu W, Kuang W, Bu Q, Li H, Zhao Y, Jiang L, Chen Y, Qin F, Li S, Wei Q, Liu X, Liu B, Chen Y, Dai Y, Wang H, Tian J, Cao G, Zhao Y, Cen X. Morphine Re-arranges Chromatin Spatial Architecture of Primate Cortical Neurons. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:551-572. [PMID: 37209997 PMCID: PMC10787020 DOI: 10.1016/j.gpb.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/22/2023]
Abstract
The expression of linear DNA sequence is precisely regulated by the three-dimensional (3D) architecture of chromatin. Morphine-induced aberrant gene networks of neurons have been extensively investigated; however, how morphine impacts the 3D genomic architecture of neurons is still unknown. Here, we applied digestion-ligation-only high-throughput chromosome conformation capture (DLO Hi-C) technology to investigate the effects of morphine on the 3D chromatin architecture of primate cortical neurons. After receiving continuous morphine administration for 90 days on rhesus monkeys, we discovered that morphine re-arranged chromosome territories, with a total of 391 segmented compartments being switched. Morphine altered over half of the detected topologically associated domains (TADs), most of which exhibited a variety of shifts, followed by separating and fusing types. Analysis of the looping events at kilobase-scale resolution revealed that morphine increased not only the number but also the length of differential loops. Moreover, all identified differentially expressed genes from the RNA sequencing data were mapped to the specific TAD boundaries or differential loops, and were further validated for changed expression. Collectively, an altered 3D genomic architecture of cortical neurons may regulate the gene networks associated with morphine effects. Our finding provides critical hubs connecting chromosome spatial organization and gene networks associated with the morphine effects in humans.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaojie Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chunqi Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; Shenzhen Key Laboratory of Drug Addiction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Feng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qinfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaocong Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bin Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Üstündağ FD, Ünal İ, Üstündağ ÜV, Cansız D, Beler M, Alturfan AA, Tiber PM, Emekli-Alturfan E. Morphine ameliorates pentylenetetrazole-induced locomotor pattern in zebrafish embryos; mechanism involving regulation of opioid receptors, suppression of oxidative stress, and inflammation in epileptogenesis. Toxicol Mech Methods 2023; 33:151-160. [PMID: 35866229 DOI: 10.1080/15376516.2022.2105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Zebrafish (Danio rerio) is becoming an increasingly important model in epilepsy research. Pentylenetetrazole (PTZ) is a convulsant agent that induces epileptic seizure-like state in zebrafish and zebrafish embryos and is most commonly used in antiepileptic drug discovery research to evaluate seizure mechanisms. Classical antiepileptic drugs, such as valproic acid (VPA) reduce PTZ-induced epileptiform activities. Opioid system has been suggested to play a role in epileptogenesis. The aim of our study is to determine the effects of morphine in PTZ-induced epilepsy model in zebrafish embryos by evaluating locomotor activity and parameters related to oxidant-antioxidant status, inflammation, and cholinergic system as well as markers of neuronal activity c-fos, bdnf, and opioid receptors. Zebrafish embryos at 72 hpf were exposed to PTZ (20 mM), VPA (1 mM), and Morphine (MOR) (100 µM). MOR and VPA pretreated groups were treated with either MOR (MOR + PTZ) or VPA (VPA + PTZ) for 20 min before PTZ expoure. Locomotor activity was quantified as total distance moved (mm), average speed (mm/sec) and exploration rate (%) and analyzed using ToxTrac tracking programme. Oxidant-antioxidant system parameters, acetylcholinesterase activity, and sialic acid leves were evaluated using spectrophotometric methods. The expression of c-fos, bdnf, oprm1, and oprd1 were evaluated by RT-PCR. MOR pretreatment ameliorated PTZ-induced locomotor pattern as evidenced by improved average speed, exploration rate and distance traveled. We report the restoration of inflammatory and oxidant-antioxidant system parameters, c-fos, bdnf, and opioid receptor oprm1 as the possible mechanisms involved in the ameliorative effect of MOR against PTZ-induced epileptogenic process in zebrafish embryos.
Collapse
Affiliation(s)
- Fümet Duygu Üstündağ
- Department of Biophysics, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Ünsal Veli Üstündağ
- Faculty of Medicine, Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Derya Cansız
- Faculty of Medicine, Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - A Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Pınar Mega Tiber
- Department of Biophysics, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
Díaz-Rúa A, Chivite M, Comesaña S, Conde-Sieira M, Soengas JL. The Opioid System in Rainbow Trout Telencephalon Is Probably Involved in the Hedonic Regulation of Food Intake. Front Physiol 2022; 13:800218. [PMID: 35299666 PMCID: PMC8921556 DOI: 10.3389/fphys.2022.800218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
We hypothesize that opioids are involved in the regulation of food intake in fish through homeostatic and hedonic mechanisms. Therefore, we evaluated in rainbow trout (Oncorhynchus mykiss) hypothalamus and telencephalon changes in precursors, endogenous ligands and receptors of the opioid system under different situations aimed to induce changes in the homeostatic (through fasted/fed/refed fish) and hedonic (through feeding fish a control or a palatable high-fat diet) regulation of food intake. No major changes occurred in parameters assessed related with the nutritional condition of fish (fasted/fed/refed), allowing us to suggest that the opioid system seems not to have an important role in the homeostatic regulation of food intake in rainbow trout. The responses observed in telencephalon of rainbow trout fed the palatable high-fat diet included a decrease in mRNA abundance of the opioid precursor penka, in a way similar to that known in mammals, and increased mRNA abundance of the opioid receptors oprd1 and oprk1 supporting a role for telencephalic opioid system in the hedonic regulation of food intake in fish.
Collapse
|
7
|
Jin H, Yang D, Hao Y, Zhang J, Wu P, Liu W, Zhao M. Estimation of the psychoactive substances consumption within 12 wastewater treatment plants service areas in a certain city of Guangxi, China applying wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146370. [PMID: 33725608 DOI: 10.1016/j.scitotenv.2021.146370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The abuse of psychoactive substances has been increasing dramatically over the last few years, which is becoming a concern for human health and social stability. How to accurately estimate psychoactive substances' total consumption in certain areas is the key to manage such substances. In order to control psychoactive substances, 8 psychoactive substances' consumption within 12 wastewater treatment plants (WWTPs) service areas in a certain city of Guangxi, China was investigated in 2019. Firstly, a solid-phase extraction-liquid chromatography-tandem mass spectrometry method was used to determine the influent concentrations. Morphine (MOR), 3, 4-methylenedioxymethamphetamine (MDMA), methamphetamine (METH), ketamine (KET), and norketamine (NK) were detected, with the concentrations ranging from less than method detection limit (NK, MDMA) to 170.91 (METH) ng/L. Then, the back-estimation of consumption was conducted according to the objective and near real-time wastewater-based epidemiology (WBE). The results demonstrate that KET, MOR, and METH are the most abused psychoactive substances, with the mean consumption of 682.42, 167.81, and 44.56 mg/day/1000 inh, respectively. The psychoactive substance residues of WWTPs influent were analyzed to estimate such substances' consumption in specific areas, so as to provide support for risk prevention and control.
Collapse
Affiliation(s)
- Hangbiao Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Dan Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yunbin Hao
- Hangzhou Ruide Life Technology Co., Ltd., Hangzhou, Zhejiang 311121, PR China
| | - Jinyang Zhang
- Hangzhou Ruide Life Technology Co., Ltd., Hangzhou, Zhejiang 311121, PR China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Weiping Liu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
8
|
Habenula GPR139 is associated with fear learning in the zebrafish. Sci Rep 2021; 11:5549. [PMID: 33692406 PMCID: PMC7946892 DOI: 10.1038/s41598-021-85002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/23/2021] [Indexed: 01/09/2023] Open
Abstract
G-protein coupled receptor 139 (GPR139) is an evolutionarily conserved orphan receptor, predominantly expressing in the habenula of vertebrate species. The habenula has recently been implicated in aversive response and its associated learning. Here, we tested the hypothesis that GPR139 signalling in the habenula may play a role in fear learning in the zebrafish. We examined the effect of intraperitoneal injections of a human GPR139-selective agonist (JNJ-63533054) on alarm substance-induced fear learning using conditioned place avoidance paradigm, where an aversive stimulus is paired with one compartment, while its absence is associated with the other compartment of the apparatus. The results indicate that fish treated with 1 µg/g body weight of GPR139 agonist displayed no difference in locomotor activity and alarm substance-induced fear response. However, avoidance to fear-conditioned compartment was diminished, which suggests that the agonist blocks the consolidation of contextual fear memory. On the other hand, fish treated with 0.1 µg/g body weight of GPR139 agonist spent a significantly longer time in the unconditioned neutral compartment as compared to the conditioned (punished and unpunished) compartments. These results suggest that activation of GPR139 signalling in the habenula may be involved in fear learning and the decision-making process in the zebrafish.
Collapse
|
9
|
Costa FV, Rosa LV, Quadros VA, de Abreu MS, Santos ARS, Sneddon LU, Kalueff AV, Rosemberg DB. The use of zebrafish as a non-traditional model organism in translational pain research: the knowns and the unknowns. Curr Neuropharmacol 2021; 20:476-493. [PMID: 33719974 DOI: 10.2174/1570159x19666210311104408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) has been considered a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish to recognize painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from an evolutionary and translational perspective. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.
Collapse
Affiliation(s)
- Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS. Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC. Brazil
| | - Lynne U Sneddon
- University of Gothenburg, Department of Biological & Environmental Sciences, Box 461, SE-405 30 Gothenburg. Sweden
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg. Russian Federation
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| |
Collapse
|
10
|
Sivalingam M, Ogawa S, Parhar IS. Habenula kisspeptin retrieves morphine impaired fear memory in zebrafish. Sci Rep 2020; 10:19569. [PMID: 33177592 PMCID: PMC7659006 DOI: 10.1038/s41598-020-76287-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The habenula is an evolutionarily conserved brain structure, which has recently been implicated in fear memory. In the zebrafish, kisspeptin (Kiss1) is predominantly expressed in the habenula, which has been implicated as a modulator of fear response. Hence, in the present study, we questioned whether Kiss1 has a role in fear memory and morphine-induced fear memory impairment using an odorant cue (alarm substances, AS)-induced fear avoidance paradigm in adult zebrafish, whereby the fear-conditioned memory can be assessed by a change of basal place preference (= avoidance) of fish due to AS-induced fear experience. Subsequently, to examine the possible role of Kiss1 neurons-serotonergic pathway, kiss1 mRNA and serotonin levels were measured. AS exposure triggered fear episodes and fear-conditioned place avoidance. Morphine treatment followed by AS exposure, significantly impaired fear memory with increased time-spent in AS-paired compartment. However, fish administered with Kiss1 (10–21 mol/fish) after morphine treatment had significantly lower kiss1 mRNA levels but retained fear memory. In addition, the total brain serotonin levels were significantly increased in AS- and Kiss1-treated groups as compared to control and morphine treated group. These results suggest that habenular Kiss1 might be involved in consolidation or retrieval of fear memory through the serotonin system.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|