1
|
Hippocampal expression of the cannabinoid receptor type 1 in canine epilepsy. Sci Rep 2023; 13:3138. [PMID: 36823232 PMCID: PMC9950490 DOI: 10.1038/s41598-023-29868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
Canine drug-resistant epilepsy is a prevailing issue in veterinary neurology. Alternative or additional treatment with cannabinoids is showing promising results in seizure management. A crucial component of the endocannabinoid system, cannabinoid receptor type 1 (CB1R), is heavily involved in the control of neurotransmitter release. Knowledge of its distribution in the epileptic brain would serve a better understanding of disease pathology and application of cannabinoids in dogs with epilepsy. CB1R distribution was assessed in sub-regions of hippocampus of dogs with idiopathic epilepsy, structural epilepsy and without cerebral pathology. In dogs with idiopathic epilepsy, significantly decreased CB1R expression compared to control animals was observed in CA1. In dogs with structural epilepsy, a significant increase in CB1R signal intensity in comparison to controls was observed. CB1R expression was higher in the structural group as compared to the idiopathic. Double immunofluorescence showed co-localization between CB1R and an astrocytic marker in about 50% of cells, regardless of the diagnosis. In summary, CB1R expression in canine hippocampus undergoes modification by the epileptic process and the direction of this change depends on the etiology of the disease. The distinct disease-associated CB1R expression needs to be considered in new treatment development for dogs with epilepsy.
Collapse
|
2
|
Taylor A, Nweke A, Vincent V, Oke M, Kulkarni P, Ferris CF. Chronic exposure to inhaled vaporized cannabis high in Δ9-THC alters brain structure in adult female mice. Front Neurosci 2023; 17:1139309. [PMID: 36950131 PMCID: PMC10025305 DOI: 10.3389/fnins.2023.1139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction The medical and recreational use of cannabis has increased in the United States. Its chronic use can have detrimental effects on the neurobiology of the brain-effects that are age-dependent. This was an exploratory study looking at the effects of chronically inhaled vaporized cannabis on brain structure in adult female mice. Methods Adult mice were exposed daily to vaporized cannabis (10.3% THC and 0.05% CBD) or placebo for 21 days. Following cessation of treatment mice were examined for changes in brain structure using voxel-based morphometry and diffusion weighted imaging MRI. Data from each imaging modality were registered to a 3D mouse MRI atlas with 139 brain areas. Results Mice showed volumetric changes in the forebrain particularly the prefrontal cortex, accumbens, ventral pallidum, and limbic cortex. Many of these same brain areas showed changes in water diffusivity suggesting alterations in gray matter microarchitecture. Discussion These data are consistent with much of the clinical findings on cannabis use disorder. The sensitivity of the dopaminergic system to the daily exposure of vaporized cannabis raises concerns for abuse liability in drug naïve adult females that initiate chronic cannabis use.
Collapse
Affiliation(s)
- Autumn Taylor
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Amanda Nweke
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Veniesha Vincent
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Marvellous Oke
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
- Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
- *Correspondence: Craig F. Ferris,
| |
Collapse
|
3
|
Li X, Zhao G, Huang H, Ye J, Xu J, Zhou Y, Zhu X, Wang L, Wang F. Lifespan changes in cannabinoid 1 receptor mRNA expression in the female C57BL/6J mouse brain. J Comp Neurol 2022; 531:294-313. [PMID: 36240125 DOI: 10.1002/cne.25427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Many brain functions that underlie behavior, cognition, and emotions vary with age, as does susceptibility to neuropsychological disorders. The expression of specific genes that are involved in these functions, such as the genes encoding for oxytocin, its receptors, and apolipoprotein D, varies with age across different brain regions. The cannabinoid 1 receptor (CB1 R) is one of the most widely spread G-protein coupled receptors in the central nervous system and is increasingly recognized for its important contribution to various brain functions. Although changes in CB1 R expression with age have been reported in the male mouse brain, they have not been well investigated in the female brain. Here, we used fluorescence in situ hybridization to target CB1 R mRNA in the whole brains of female C57BL/6J mice aged 4, 6, 12, 52 (12 months) and 86 weeks (20 months), and quantified CB1 R-positive cells in 36 brain regions across the whole brain. The results showed that CB1 R-positive cells number changed with age. Specifically, CB1 R expression increased with age in some subregions of the cortex, decreased with age in the lateral septal area, and reached its lowest level at 52 weeks in the thalamus, hypothalamus, and hindbrain subregions. Cluster analysis revealed that some brain regions shared similar temporal characteristics in CB1 R-positive cell number across the lifespan. Our results provide evidence that investigation of the neural basis of age-related characteristics of female brain functions is not only warranted but required.
Collapse
Affiliation(s)
- Xulin Li
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gaoyang Zhao
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongren Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Xu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liping Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|