1
|
McKenzie AT, Nnadi O, Slagell KD, Thorn EL, Farrell K, Crary JF. Fluid preservation in brain banking: a review. FREE NEUROPATHOLOGY 2024; 5:5-10. [PMID: 38690035 PMCID: PMC11058410 DOI: 10.17879/freeneuropathology-2024-5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Fluid preservation is nearly universally used in brain banking to store fixed tissue specimens for future research applications. However, the effects of long-term immersion on neural circuitry and biomolecules are not well characterized. As a result, there is a need to synthesize studies investigating fluid preservation of brain tissue. We searched PubMed and other databases to identify studies measuring the effects of fluid preservation in nervous system tissue. We categorized studies based on the fluid preservative used: formaldehyde solutions, buffer solutions, alcohol solutions, storage after tissue clearing, and cryoprotectant solutions. We identified 91 studies containing 197 independent observations of the effects of long-term storage on cellular morphology. Most studies did not report any significant alterations due to long-term storage. When present, the most frequent alteration was decreased antigenicity, commonly attributed to progressive crosslinking by aldehydes that renders biomolecules increasingly inaccessible over time. To build a mechanistic understanding, we discuss biochemical aspects of long-term fluid preservation. A subset of lipids appears to be chemical altered or extracted over time due to incomplete retention in the crosslinked gel. Alternative storage fluids mitigate the problem of antigen masking but have not been extensively characterized and may have other downsides. We also compare fluid preservation to cryopreservation, paraffin embedding, and resin embedding. Overall, existing evidence suggests that fluid preservation provides maintenance of neural architecture for decades, including precise structural details. However, to avoid the well-established problem of overfixation caused by storage in high concentration formaldehyde solutions, fluid preservation procedures can use an initial fixation step followed by an alternative long-term storage fluid. Further research is warranted on optimizing protocols and characterizing the generalizability of the storage artifacts that have been identified.
Collapse
Affiliation(s)
| | - Oge Nnadi
- Brain Preservation Foundation, Ashburn, Virginia, USA
| | - Kat D. Slagell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma L. Thorn
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kurt Farrell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F. Crary
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Reddaway J, Richardson PE, Bevan RJ, Stoneman J, Palombo M. Microglial morphometric analysis: so many options, so little consistency. Front Neuroinform 2023; 17:1211188. [PMID: 37637472 PMCID: PMC10448193 DOI: 10.3389/fninf.2023.1211188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
Quantification of microglial activation through morphometric analysis has long been a staple of the neuroimmunologist's toolkit. Microglial morphological phenomics can be conducted through either manual classification or constructing a digital skeleton and extracting morphometric data from it. Multiple open-access and paid software packages are available to generate these skeletons via semi-automated and/or fully automated methods with varying degrees of accuracy. Despite advancements in methods to generate morphometrics (quantitative measures of cellular morphology), there has been limited development of tools to analyze the datasets they generate, in particular those containing parameters from tens of thousands of cells analyzed by fully automated pipelines. In this review, we compare and critique the approaches using cluster analysis and machine learning driven predictive algorithms that have been developed to tackle these large datasets, and propose improvements for these methods. In particular, we highlight the need for a commitment to open science from groups developing these classifiers. Furthermore, we call attention to a need for communication between those with a strong software engineering/computer science background and neuroimmunologists to produce effective analytical tools with simplified operability if we are to see their wide-spread adoption by the glia biology community.
Collapse
Affiliation(s)
- Jack Reddaway
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Innovation Institute (NMHII), Cardiff University, Cardiff, United Kingdom
| | | | - Ryan J. Bevan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Jessica Stoneman
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Sheet AH, Hamdy O, Abdel-Harith M. Scattering and absorption properties modification of optically cleared skeletal muscles: an ex vivo study. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:1042-1050. [PMID: 37706757 DOI: 10.1364/josaa.486496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/12/2023] [Indexed: 09/15/2023]
Abstract
Optical clearing is a relatively new approach to enhancing the optical transparency of biological tissues by reducing their scattering properties. The optical clearing effect is achievable via various chemical, physical, and photo-thermal techniques. The present work studied optical parameters of bovine skeletal muscles under different clearing protocols: immersion optical clearing in 99% glycerol and photo-thermal optical clearing via exposure to IR laser irradiation. Moreover, the two techniques were combined with different immersion time intervals after multiple exposure periods to get optimum results. The muscle samples' diffuse reflectance and total transmittance were measured using a single integrating sphere and introduced to the Kubleka-Munk mathematical model to determine the absorption and reduced scattering coefficients. Results revealed a 6% scattering reduction after irradiating the sample for 10 min and immersing it in glycerol for 18 min and 8% after 20 min of laser irradiation and 18 min of immersion. Moreover, increases of 6.5% and 7.5% in penetration depth were prominent for the total treatment times of 28 min and 38 min, respectively. Furthermore, the measurements' accuracy and sensitivity were analyzed and evaluated using the receiver operating characteristic method. The accuracy ranged from 0.93 to 0.98, with sensitivity from 0.93 to 0.99 for each clearing protocol. Although laser irradiation and application of 99% glycerol separately produced scattering light reduction, the maximal clearing effect was obtained while irradiating the sample with a laser for 20 min and then immersing it in 99% glycerol for a maximum of 18 min.
Collapse
|
4
|
Mohizin A, Imran JH, Lee KS, Kim JK. Dynamic interaction of injected liquid jet with skin layer interfaces revealed by microsecond imaging of optically cleared ex vivo skin tissue model. J Biol Eng 2023; 17:15. [PMID: 36849998 PMCID: PMC9969392 DOI: 10.1186/s13036-023-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Needle-free jet injection (NFJI) systems enable a controlled and targeted delivery of drugs into skin tissue. However, a scarce understanding of their underlying mechanisms has been a major deterrent to the development of an efficient system. Primarily, the lack of a suitable visualization technique that could capture the dynamics of the injected fluid-tissue interaction with a microsecond range temporal resolution has emerged as a main limitation. A conventional needle-free injection system may inject the fluids within a few milliseconds and may need a temporal resolution in the microsecond range for obtaining the required images. However, the presently available imaging techniques for skin tissue visualization fail to achieve these required spatial and temporal resolutions. Previous studies on injected fluid-tissue interaction dynamics were conducted using in vitro media with a stiffness similar to that of skin tissue. However, these media are poor substitutes for real skin tissue, and the need for an imaging technique having ex vivo or in vivo imaging capability has been echoed in the previous reports. METHODS A near-infrared imaging technique that utilizes the optical absorption and fluorescence emission of indocyanine green dye, coupled with a tissue clearing technique, was developed for visualizing a NFJI in an ex vivo porcine skin tissue. RESULTS The optimal imaging conditions obtained by considering the optical properties of the developed system and mechanical properties of the cleared ex vivo samples are presented. Crucial information on the dynamic interaction of the injected liquid jet with the ex vivo skin tissue layers and their interfaces could be obtained. CONCLUSIONS The reported technique can be instrumental for understanding the injection mechanism and for the development of an efficient transdermal NFJI system as well.
Collapse
Affiliation(s)
- Abdul Mohizin
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jakir Hossain Imran
- Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea
| | - Kee Sung Lee
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jung Kyung Kim
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea.
| |
Collapse
|
5
|
Terstege DJ, Epp JR. Network Neuroscience Untethered: Brain-Wide Immediate Early Gene Expression for the Analysis of Functional Connectivity in Freely Behaving Animals. BIOLOGY 2022; 12:34. [PMID: 36671727 PMCID: PMC9855808 DOI: 10.3390/biology12010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Studying how spatially discrete neuroanatomical regions across the brain interact is critical to advancing our understanding of the brain. Traditional neuroimaging techniques have led to many important discoveries about the nature of these interactions, termed functional connectivity. However, in animal models these traditional neuroimaging techniques have generally been limited to anesthetized or head-fixed setups or examination of small subsets of neuroanatomical regions. Using the brain-wide expression density of immediate early genes (IEG), we can assess brain-wide functional connectivity underlying a wide variety of behavioural tasks in freely behaving animal models. Here, we provide an overview of the necessary steps required to perform IEG-based analyses of functional connectivity. We also outline important considerations when designing such experiments and demonstrate the implications of these considerations using an IEG-based network dataset generated for the purpose of this review.
Collapse
Affiliation(s)
| | - Jonathan R. Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
6
|
Xiong Y, Jiang C, Amir MB, Dong Y, Xie L, Liao Y, He W, Lu Z, Chen W. Antibody-Based Methods Reveal the Protein Expression Properties of Glucosinolate Sulfatase 1 and 2 in Plutella xylostella. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:5. [PMID: 36449010 PMCID: PMC9710514 DOI: 10.1093/jisesa/ieac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 06/17/2023]
Abstract
The glucosinolates (GLs) and myrosinase defensive systems in cruciferous plants were circumvented by Plutella xylostella using glucosinolate sulfatases (PxGSSs) during pest-plant interaction. Despite identifying three duplicated GSS-encoding genes in P. xylostella, limited information regarding their spatiotemporal and induced expression is available. Here, we investigated the tissue- and stage-specific expression and induction in response to GLs of PxGSS1 and PxGSS2 (PxGSS1/2) at the protein level, which shares a high degree of similarity in protein sequences. Western blotting (WB) analysis showed that PxGSS1/2 exhibited a higher protein level in mature larvae, their guts, and gut content. A significantly high protein and transcript levels of PxGSS1/2 were also detected in the salivary glands using WB and qRT-PCR. The immunofluorescence (IF) and immunohistochemistry (IHC) results confirmed that PxGSS1/2 is widely expressed in the larval body. The IHC was more appropriate than IF when autofluorescence interference was present in collected samples. Furthermore, the content of PxGSS1/2 did not change significantly under treatments of GL mixture from Arabidopsis thaliana ecotype Col-0, or commercial ally (sinigrin), 4-(methylsulfinyl)butyl, 3-(methylsulfinyl)propyl, and indol-3-ylmethyl GLs indicating that the major GLs from leaves of A. thaliana Col-0 failed to induce the expression of proteins for both PxGSS1 and PxGSS2. Our study systemically characterized the expression properties of PxGSS1/2 at the protein level, which improves our understanding of PxGSS1/2-center adaptation in P. xylostella during long-term insect-plant interaction.
Collapse
Affiliation(s)
| | | | - Muhammad Bilal Amir
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuhong Dong
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Lianjie Xie
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yuan Liao
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- Corresponding author, e-mail: (W.H.), (Z.L.), (W.C.)
| | - Zhanjun Lu
- Corresponding author, e-mail: (W.H.), (Z.L.), (W.C.)
| | - Wei Chen
- Corresponding author, e-mail: (W.H.), (Z.L.), (W.C.)
| |
Collapse
|
7
|
Süess P, Dircksen H, Roberts KT, Gotthard K, Nässel DR, Wheat CW, Carlsson MA, Lehmann P. Time- and temperature-dependent dynamics of prothoracicotropic hormone and ecdysone sensitivity co-regulate pupal diapause in the green-veined white butterfly Pieris napi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103833. [PMID: 36084800 DOI: 10.1016/j.ibmb.2022.103833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Diapause, a general shutdown of developmental pathways, is a vital adaptation allowing insects to adjust their life cycle to adverse environmental conditions such as winter. Diapause in the pupal stage is regulated by the major developmental hormones prothoracicotropic hormone (PTTH) and ecdysone. Termination of pupal diapause in the butterfly Pieris napi depends on low temperatures; therefore, we study the temperature-dependence of PTTH secretion and ecdysone sensitivity dynamics throughout diapause, with a focus on diapause termination. While PTTH is present throughout diapause in the cell bodies of two pairs of neurosecretory cells in the brain, it is absent in the axons, and the PTTH concentration in the haemolymph is significantly lower during diapause than during post diapause development, indicating that the PTTH signaling is reduced during diapause. The sensitivity of pupae to ecdysone injections is dependent on diapause stage. While pupae are sensitive to ecdysone during early diapause initiation, they gradually lose this sensitivity and become insensitive to non-lethal concentrations of ecdysone about 30 days into diapause. At low temperatures, reflecting natural overwintering conditions, diapause termination propensity after ecdysone injection is precocious compared to controls. In stark contrast, at high temperatures reflecting late summer and early autumn conditions, sensitivity to ecdysone does not return. Thus, here we show that PTTH secretion is reduced during diapause, and additionally, that the low ecdysone sensitivity of early diapause maintenance is lost during termination in a temperature dependent manner. The link between ecdysone sensitivity and low-temperature dependence reveals a putative mechanism of how diapause termination operates in insects that is in line with adaptive expectations for diapause.
Collapse
Affiliation(s)
- Philip Süess
- Department of Zoology, Stockholm University, Stockholm, 11418, Sweden.
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, Stockholm, 11418, Sweden
| | - Kevin T Roberts
- Department of Zoology, Stockholm University, Stockholm, 11418, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, 11418, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, 11418, Sweden
| | | | - Mikael A Carlsson
- Department of Zoology, Stockholm University, Stockholm, 11418, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, 11418, Sweden; Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany
| |
Collapse
|
8
|
van Asperen JV, van Bodegraven EJ, Robe PA, Hol EM. Determining glioma cell invasion and proliferation in ex vivo organotypic mouse brain slices using whole-mount immunostaining and tissue clearing. STAR Protoc 2022; 3:101703. [PMID: 36136755 PMCID: PMC9508478 DOI: 10.1016/j.xpro.2022.101703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
The ex vivo organotypic brain slice invasion model is commonly used to study the growth dynamics of gliomas, primary brain tumors that are known for their invasive behavior. Here, we describe a protocol where the ex vivo organotypic mouse brain slice invasion model is combined with whole-mount immunostaining, tissue clearing, and 3D reconstruction, to visualize and quantify the invasion of glioma cells. In addition, we describe an approach to determine the proliferation rate of the cells within this model. For complete details on the use and execution of this protocol, please refer to Uceda-Castro et al. (2022).
Collapse
Affiliation(s)
- Jessy V. van Asperen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands,Corresponding author
| | - Emma J. van Bodegraven
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Pierre A.J.T. Robe
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Elly M. Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands,Corresponding author
| |
Collapse
|
9
|
Lu T, Shinozaki M, Nagoshi N, Nakamura M, Okano H. Long Preservation of AAV-Transduced Fluorescence by a Modified Organic Solvent-Based Clearing Method. Int J Mol Sci 2022; 23:ijms23179637. [PMID: 36077034 PMCID: PMC9455935 DOI: 10.3390/ijms23179637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The development of tissue clearing technologies allows 3D imaging of whole tissues and organs, especially in studies of the central nervous system innervated throughout the body. Although the three-dimensional imaging of solvent-cleared organs (3DISCO) method provides a powerful clearing capacity and high transparency, the rapid quenching of endogenous fluorescence and peroxide removal process decreases its practicability. This study provides a modified method named tDISCO to solve these limitations. The tDISCO protocol can preserve AAV-transduced endogenous EGFP fluorescence for months and achieve high transparency in a fast and simple clearing process. In addition to the brain, tDISCO was applied to other organs and even hard bone tissue. tDISCO also enabled us to visualize the long projection neurons and axons with high resolution. This method provides a fast and simple clearing protocol for 3D visualization of the AAV- transduced long projection neurons throughout the brain and spinal cord.
Collapse
Affiliation(s)
- Tao Lu
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: (M.N.); (H.O.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: (M.N.); (H.O.)
| |
Collapse
|
10
|
Uceda-Castro R, van Asperen JV, Vennin C, Sluijs JA, van Bodegraven EJ, Margarido AS, Robe PAJ, van Rheenen J, Hol EM. GFAP splice variants fine-tune glioma cell invasion and tumour dynamics by modulating migration persistence. Sci Rep 2022; 12:424. [PMID: 35013418 PMCID: PMC8748899 DOI: 10.1038/s41598-021-04127-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
Glioma is the most common form of malignant primary brain tumours in adults. Their highly invasive nature makes the disease incurable to date, emphasizing the importance of better understanding the mechanisms driving glioma invasion. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocyte- and neural stem cell-derived gliomas. Glioma malignancy is associated with changes in GFAP alternative splicing, as the canonical isoform GFAPα is downregulated in higher-grade tumours, leading to increased dominance of the GFAPδ isoform in the network. In this study, we used intravital imaging and an ex vivo brain slice invasion model. We show that the GFAPδ and GFAPα isoforms differentially regulate the tumour dynamics of glioma cells. Depletion of either isoform increases the migratory capacity of glioma cells. Remarkably, GFAPδ-depleted cells migrate randomly through the brain tissue, whereas GFAPα-depleted cells show a directionally persistent invasion into the brain parenchyma. This study shows that distinct compositions of the GFAPnetwork lead to specific migratory dynamics and behaviours of gliomas.
Collapse
Affiliation(s)
- Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Emma J van Bodegraven
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Andreia S Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Rigosi E, Warrant EJ, O’Carroll DC. A new, fluorescence-based method for visualizing the pseudopupil and assessing optical acuity in the dark compound eyes of honeybees and other insects. Sci Rep 2021; 11:21267. [PMID: 34711871 PMCID: PMC8553845 DOI: 10.1038/s41598-021-00407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Recent interest in applying novel imaging techniques to infer optical resolution in compound eyes underscores the difficulty of obtaining direct measures of acuity. A widely used technique exploits the principal pseudopupil, a dark spot on the eye surface representing the ommatidial gaze direction and the number of detector units (ommatidia) viewing that gaze direction. However, dark-pigmented eyes, like those of honeybees, lack a visible pseudopupil. Attempts over almost a century to estimate optical acuity in this species are still debated. Here, we developed a method to visualize a stable, reliable pseudopupil by staining the photoreceptors with fluorescent dyes. We validated this method in several species and found it to outperform the dark pseudopupil for this purpose, even in pale eyes, allowing more precise location of the gaze centre. We then applied this method to estimate the sampling resolution in the frontal part of the eye of the honeybee forager. We found a broad frontal acute zone with interommatidial angles below 2° and a minimum interommatidial angle of 1.3°, a broader, sharper frontal acute zone than previously reported. Our study provides a new method to directly measure the sampling resolution in most compound eyes of living animals.
Collapse
Affiliation(s)
- Elisa Rigosi
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Eric J. Warrant
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - David C. O’Carroll
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
12
|
Bekkouche BMB, Shoemaker PA, Fabian JM, Rigosi E, Wiederman SD, O'Carroll DC. Modeling Nonlinear Dendritic Processing of Facilitation in a Dragonfly Target-Tracking Neuron. Front Neural Circuits 2021; 15:684872. [PMID: 34483847 PMCID: PMC8415787 DOI: 10.3389/fncir.2021.684872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Dragonflies are highly skilled and successful aerial predators that are even capable of selectively attending to one target within a swarm. Detection and tracking of prey is likely to be driven by small target motion detector (STMD) neurons identified from several insect groups. Prior work has shown that dragonfly STMD responses are facilitated by targets moving on a continuous path, enhancing the response gain at the present and predicted future location of targets. In this study, we combined detailed morphological data with computational modeling to test whether a combination of dendritic morphology and nonlinear properties of NMDA receptors could explain these observations. We developed a hybrid computational model of neurons within the dragonfly optic lobe, which integrates numerical and morphological components. The model was able to generate potent facilitation for targets moving on continuous trajectories, including a localized spotlight of maximal sensitivity close to the last seen target location, as also measured during in vivo recordings. The model did not, however, include a mechanism capable of producing a traveling or spreading wave of facilitation. Our data support a strong role for the high dendritic density seen in the dragonfly neuron in enhancing non-linear facilitation. An alternative model based on the morphology of an unrelated type of motion processing neuron from a dipteran fly required more than three times higher synaptic gain in order to elicit similar levels of facilitation, despite having only 20% fewer synapses. Our data support a potential role for NMDA receptors in target tracking and also demonstrate the feasibility of combining biologically plausible dendritic computations with more abstract computational models for basic processing as used in earlier studies.
Collapse
Affiliation(s)
| | - Patrick A Shoemaker
- Computational Science Research Center, San Diego State University, San Diego, CA, United States
| | - Joseph M Fabian
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Elisa Rigosi
- Department of Biology, Lund University, Lund, Sweden
| | - Steven D Wiederman
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
13
|
Matryba P, Łukasiewicz K, Pawłowska M, Tomczuk J, Gołąb J. Can Developments in Tissue Optical Clearing Aid Super-Resolution Microscopy Imaging? Int J Mol Sci 2021; 22:ijms22136730. [PMID: 34201632 PMCID: PMC8268743 DOI: 10.3390/ijms22136730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid development of super-resolution microscopy (SRM) techniques opens new avenues to examine cell and tissue details at a nanometer scale. Due to compatibility with specific labelling approaches, in vivo imaging and the relative ease of sample preparation, SRM appears to be a valuable alternative to laborious electron microscopy techniques. SRM, however, is not free from drawbacks, with the rapid quenching of the fluorescence signal, sensitivity to spherical aberrations and light scattering that typically limits imaging depth up to few micrometers being the most pronounced ones. Recently presented and robustly optimized sets of tissue optical clearing (TOC) techniques turn biological specimens transparent, which greatly increases the tissue thickness that is available for imaging without loss of resolution. Hence, SRM and TOC are naturally synergistic techniques, and a proper combination of these might promptly reveal the three-dimensional structure of entire organs with nanometer resolution. As such, an effort to introduce large-scale volumetric SRM has already started; in this review, we discuss TOC approaches that might be favorable during the preparation of SRM samples. Thus, special emphasis is put on TOC methods that enhance the preservation of fluorescence intensity, offer the homogenous distribution of molecular probes, and vastly decrease spherical aberrations. Finally, we review examples of studies in which both SRM and TOC were successfully applied to study biological systems.
Collapse
Affiliation(s)
- Paweł Matryba
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.T.); (J.G.)
- The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, 02-097 Warsaw, Poland
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
- Correspondence:
| | - Kacper Łukasiewicz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Monika Pawłowska
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Tomczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.T.); (J.G.)
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.T.); (J.G.)
| |
Collapse
|