1
|
Holroyd NA, Walsh C, Gourmet L, Walker-Samuel S. Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions. Biomedicines 2023; 11:909. [PMID: 36979887 PMCID: PMC10045950 DOI: 10.3390/biomedicines11030909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Episcopic imaging using techniques such as High Resolution Episcopic Microscopy (HREM) and its variants, allows biological samples to be visualized in three dimensions over a large field of view. Quantitative analysis of episcopic image data is undertaken using a range of methods. In this systematic review, we look at trends in quantitative analysis of episcopic images and discuss avenues for further research. Papers published between 2011 and 2022 were analyzed for details about quantitative analysis approaches, methods of image annotation and choice of image processing software. It is shown that quantitative processing is becoming more common in episcopic microscopy and that manual annotation is the predominant method of image analysis. Our meta-analysis highlights where tools and methods require further development in this field, and we discuss what this means for the future of quantitative episcopic imaging, as well as how annotation and quantification may be automated and standardized across the field.
Collapse
Affiliation(s)
| | - Claire Walsh
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Lucie Gourmet
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| | - Simon Walker-Samuel
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| |
Collapse
|
2
|
Reissig LF, Geyer SH, Winkler V, Preineder E, Prin F, Wilson R, Galli A, Tudor C, White JK, Mohun TJ, Weninger WJ. Detailed characterizations of cranial nerve anatomy in E14.5 mouse embryos/fetuses and their use as reference for diagnosing subtle, but potentially lethal malformations in mutants. Front Cell Dev Biol 2022; 10:1006620. [PMID: 36438572 PMCID: PMC9682249 DOI: 10.3389/fcell.2022.1006620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 01/03/2024] Open
Abstract
Careful phenotype analysis of genetically altered mouse embryos/fetuses is vital for deciphering the function of pre- and perinatally lethal genes. Usually this involves comparing the anatomy of mutants with that of wild types of identical developmental stages. Detailed three dimensional information on regular cranial nerve (CN) anatomy of prenatal mice is very scarce. We therefore set out to provide such information to be used as reference data and selected mutants to demonstrate its potential for diagnosing CN abnormalities. Digital volume data of 152 wild type mice, harvested on embryonic day (E)14.5 and of 18 mutants of the Col4a2, Arid1b, Rpgrip1l and Cc2d2a null lines were examined. The volume data had been created with High Resolution Episcopic Microscopy (HREM) as part of the deciphering the mechanisms of developmental disorders (DMDD) program. Employing volume and surface models, oblique slicing and digital measuring tools, we provide highly detailed anatomic descriptions of the CNs and measurements of the diameter of selected segments. Specifics of the developmental stages of E14.5 mice and anatomic norm variations were acknowledged. Using the provided data as reference enabled us to objectively diagnose CN abnormalities, such as abnormal formation of CN3 (Col4a2), neuroma of the motor portion of CN5 (Arid1b), thinning of CN7 (Rpgrip1l) and abnormal topology of CN12 (Cc2d2a). Although, in a first glimpse perceived as unspectacular, defects of the motor CN5 or CN7, like enlargement or thinning can cause death of newborns, by hindering feeding. Furthermore, abnormal topology of CN12 was recently identified as a highly reliable marker for low penetrating, but potentially lethal defects of the central nervous system.
Collapse
Affiliation(s)
- Lukas F. Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Stefan H. Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Viola Winkler
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Ester Preineder
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Fabrice Prin
- The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Wolfgang J. Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Geyer SH, Maurer‐Gesek B, Reissig LF, Rose J, Prin F, Wilson R, Galli A, Tudor C, White JK, Mohun TJ, Weninger WJ. The venous system of E14.5 mouse embryos-reference data and examples for diagnosing malformations in embryos with gene deletions. J Anat 2022; 240:11-22. [PMID: 34435363 PMCID: PMC8655187 DOI: 10.1111/joa.13536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Approximately one-third of randomly produced knockout mouse lines produce homozygous offspring, which fail to survive the perinatal period. The majority of these die around or after embryonic day (E)14.5, presumably from cardiovascular insufficiency. For diagnosing structural abnormalities underlying death and diseases and for researching gene function, the phenotype of these individuals has to be analysed. This makes the creation of reference data, which define normal anatomy and normal variations the highest priority. While such data do exist for the heart and arteries, they are still missing for the venous system. Here we provide high-quality descriptive and metric information on the normal anatomy of the venous system of E14.5 embryos. Using high-resolution digital volume data and 3D models from 206 genetically normal embryos, bred on the C57BL/6N background, we present precise descriptive and metric information of the venous system as it presents itself in each of the six developmental stages of E14.5. The resulting data shed new light on the maturation and remodelling of the venous system at transition of embryo to foetal life and provide a reference that can be used for detecting venous abnormalities in mutants. To explore this capacity, we analysed the venous phenotype of embryos from 7 knockout lines (Atp11a, Morc2a, 1700067K01Rik, B9d2, Oaz1, Celf4 and Coro1c). Careful comparisons enabled the diagnosis of not only simple malformations, such as dual inferior vena cava, but also complex and subtle abnormalities, which would have escaped diagnosis in the absence of detailed, stage-specific referenced data.
Collapse
Affiliation(s)
- Stefan H. Geyer
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Barbara Maurer‐Gesek
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Lukas F. Reissig
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Julia Rose
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Fabrice Prin
- Crick Advanced Light Microscopy FacilityThe Francis Crick InstituteLondonUK
| | | | - Antonella Galli
- Wellcome Trust Sanger InstituteWellcome Genome CampusCambridgeUK
| | - Catherine Tudor
- Wellcome Trust Sanger InstituteWellcome Genome CampusCambridgeUK
| | | | | | - Wolfgang J. Weninger
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| |
Collapse
|
4
|
Artefacts in Volume Data Generated with High Resolution Episcopic Microscopy (HREM). Biomedicines 2021; 9:biomedicines9111711. [PMID: 34829939 PMCID: PMC8615656 DOI: 10.3390/biomedicines9111711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
High resolution episcopic microscopy (HREM) produces digital volume data by physically sectioning histologically processed specimens, while capturing images of the subsequently exposed block faces. Our study aims to systematically define the spectrum of typical artefacts inherent to HREM data and to research their effect on the interpretation of the phenotype of wildtype and mutant mouse embryos. A total of 607 (198 wildtypes, 409 mutants) HREM data sets of mouse embryos harvested at embryonic day (E) 14.5 were systematically and comprehensively examined. The specimens had been processed according to essentially identical protocols. Each data set comprised 2000 to 4000 single digital images. Voxel dimensions were 3 × 3 × 3 µm3. Using 3D volume models and virtual resections, we identified a number of characteristic artefacts and grouped them according to their most likely causality. Furthermore, we highlight those that affect the interpretation of embryo data and provide examples for artefacts mimicking tissue defects and structural pathologies. Our results aid in optimizing specimen preparation and data generation, are vital for the correct interpretation of HREM data and allow distinguishing tissue defects and pathologies from harmless artificial alterations. In particular, they enable correct diagnosis of pathologies in mouse embryos serving as models for deciphering the mechanisms of developmental disorders.
Collapse
|
5
|
Wendling O, Hentsch D, Jacobs H, Lemercier N, Taubert S, Pertuy F, Vonesch JL, Sorg T, Di Michele M, Le Cam L, Rosahl T, Carballo-Jane E, Liu M, Mu J, Mark M, Herault Y. High Resolution Episcopic Microscopy for Qualitative and Quantitative Data in Phenotyping Altered Embryos and Adult Mice Using the New "Histo3D" System. Biomedicines 2021; 9:767. [PMID: 34356832 PMCID: PMC8301480 DOI: 10.3390/biomedicines9070767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
3D imaging in animal models, during development or in adults, facilitates the identification of structural morphological changes that cannot be achieved with traditional 2D histological staining. Through the reconstruction of whole embryos or a region-of-interest, specific changes are better delimited and can be easily quantified. We focused here on high-resolution episcopic microscopy (HREM), and its potential for visualizing and quantifying the organ systems of normal and genetically altered embryos and adult organisms. Although the technique is based on episcopic images, these are of high resolution and are close to histological quality. The images reflect the tissue structure and densities revealed by histology, albeit in a grayscale color map. HREM technology permits researchers to take advantage of serial 2D aligned stacks of images to perform 3D reconstructions. Three-dimensional visualization allows for an appreciation of topology and morphology that is difficult to achieve with classical histological studies. The nature of the data lends itself to novel forms of computational analysis that permit the accurate quantitation and comparison of individual embryos in a manner that is impossible with histology. Here, we have developed a new HREM prototype consisting of the assembly of a Leica Biosystems Nanocut rotary microtome with optics and a camera. We describe some examples of applications in the prenatal and adult lifestage of the mouse to show the added value of HREM for phenotyping experimental cohorts to compare and quantify structure volumes. At prenatal stages, segmentations and 3D reconstructions allowed the quantification of neural tissue and ventricular system volumes of normal brains at E14.5 and E16.5 stages. 3D representations of normal cranial and peripheric nerves at E15.5 and of the normal urogenital system from stages E11.5 to E14.5 were also performed. We also present a methodology to quantify the volume of the atherosclerotic plaques of ApoEtm1Unc/tm1Unc mutant mice and illustrate a 3D reconstruction of knee ligaments in adult mice.
Collapse
Affiliation(s)
- Olivia Wendling
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Didier Hentsch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Hugues Jacobs
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | | | - Serge Taubert
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Fabien Pertuy
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | - Jean-Luc Vonesch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Tania Sorg
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | - Michela Di Michele
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, 34298 Montpellier, France; (M.D.M.); (L.L.C.)
- Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, 34298 Montpellier, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, 34298 Montpellier, France; (M.D.M.); (L.L.C.)
- Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, 34298 Montpellier, France
| | - Thomas Rosahl
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Ester Carballo-Jane
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Mindy Liu
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - James Mu
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Manuel Mark
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), CEDEX, 67091 Strasbourg, France
| | - Yann Herault
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| |
Collapse
|