1
|
Claverie N, Buvat P, Casas J. Active Sensing in Bees Through Antennal Movements Is Independent of Odor Molecule. Integr Comp Biol 2023; 63:315-331. [PMID: 36958852 DOI: 10.1093/icb/icad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
When sampling odors, many insects are moving their antennae in a complex but repeatable fashion. Previous studies with bees have tracked antennal movements in only two dimensions, with a low sampling rate and with relatively few odorants. A detailed characterization of the multimodal antennal movement patterns as function of olfactory stimuli is thus wanted. The aim of this study is to test for a relationship between the scanning movements and the properties of the odor molecule. We tracked several key locations on the antennae of bumblebees at high frequency and in three dimensions while stimulating the insect with puffs of 11 common odorants released in a low-speed continuous flow. Water and paraffin were used as negative controls. Movement analysis was done with the neural network Deeplabcut. Bees use a stereotypical oscillating motion of their antennae when smelling odors, similar across all bees, independently of the identity of the odors and hence their diffusivity and vapor pressure. The variability in the movement amplitude among odors is as large as between individuals. The main type of oscillation at low frequencies and large amplitude is triggered by the presence of an odor and is in line with previous work, as is the speed of movement. The second oscillation mode at higher frequencies and smaller amplitudes is constantly present. Antennae are quickly deployed when a stimulus is perceived, decorrelate their movement trajectories rapidly, and oscillate vertically with a large amplitude and laterally with a smaller one. The cone of airspace thus sampled was identified through the 3D understanding of the motion patterns. The amplitude and speed of antennal scanning movements seem to be function of the internal state of the animal, rather than determined by the odorant. Still, bees display an active olfactory sampling strategy. First, they deploy their antennae when perceiving an odor. Second, fast vertical scanning movements further increase the odorant capture rate. Finally, lateral movements might enhance the likelihood to locate the source of odor, similarly to the lateral scanning movement of insects at odor plume boundaries.
Collapse
Affiliation(s)
- Nicolas Claverie
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, 37200 Tours, France
- CEA le Ripault, Centre d'études du Ripault, 37260 Monts, France
| | - Pierrick Buvat
- CEA le Ripault, Centre d'études du Ripault, 37260 Monts, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, 37200 Tours, France
| |
Collapse
|
2
|
Dürr V, Mesanovic A. Behavioural function and development of body-to-limb proportions and active movement ranges in three stick insect species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:265-284. [PMID: 35986777 PMCID: PMC10006035 DOI: 10.1007/s00359-022-01564-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Overall body proportions and relative limb length are highly characteristic for most insect taxa. In case of the legs, limb length has mostly been discussed with regard to parameters of locomotor performance and, in particular cases, as an adaptation to environmental factors or to the mating system. Here, we compare three species of stick and leaf insects (Phasmatodea) that differ strongly in the length ratio between antennae and walking legs, with the antennae of Medauroidea extradentata being much shorter than its legs, nearly equal length of antennae and legs in Carausius morosus, and considerably longer antennae than front legs in Aretaon asperrimus. We show that that relative limb length is directly related to the near-range exploration effort, with complementary function of the antennae and front legs irrespective of their length ratio. Assuming that these inter-species differences hold for both sexes and all developmental stages, we further explore how relative limb length differs between sexes and how it changes throughout postembryonic development. We show that the pattern of limb-to-body proportions is species-characteristic despite sexual dimorphism, and find that the change in sexual dimorphism is strongest during the last two moults. Finally, we show that antennal growth rate is consistently higher than that of front legs, but differs categorically between the species investigated. Whereas antennal growth rate is constant in Carausius, the antennae grow exponentially in Medauroidea and with a sudden boost during the last moult in Aretaon.
Collapse
Affiliation(s)
- Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
- Center for Cognitive Interaction Technology, Bielefeld University, 33615, Bielefeld, Germany.
| | - Ago Mesanovic
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| |
Collapse
|
3
|
Berendes V, Dürr V. Active tactile exploration and tactually induced turning in tethered walking stick insects. J Exp Biol 2022; 225:274336. [PMID: 35142361 DOI: 10.1242/jeb.243190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022]
Abstract
Many animals use their tactile sense for active exploration and tactually guided behaviors like near-range orientation. In insects, tactile sensing is often intimately linked to locomotion, resulting in the orchestration of several concurrent active movements, including turning of the entire body, rotation of the head, and searching or sampling movements of the antennae. The present study aims at linking the sequence of tactile contact events to associated changes of all three kinds of these active movements (body, head and antennae). To do so, we chose the Indian stick insect Carausius morosus, a common organism to study sensory control of locomotion. Methodologically, we combined recordings of walking speed, heading, whole-body kinematics and antennal contact sequences during stationary, tethered walking and controlled presentation of an "artificial twig" for tactile exploration. Our results show that object presentation episodes as brief as five seconds are sufficient to allow for a systematic investigation of tactually-induced turning behavior in walking stick insects. Animals began antennating the artificial twig within 0.5 s. and altered the beating-fields of both antennae in a position-dependent manner. This change was mainly carried by a systematic shift of the head-scape joint movement and accompanied by associated changes in contact likelihood, contact location and sampling direction of the antennae. The turning tendency of the insect also depended on stimulus position, whereas the active, rhythmic head rotation remained un-affected by stimulus presentation. We conclude that the azimuth of contact location is a key parameter of active tactile exploration and tactually-induced turning in stick insects.
Collapse
Affiliation(s)
- Volker Berendes
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Jaske B, Lepreux G, Dürr V. Input of hair field afferents to a descending interneuron. J Neurophysiol 2021; 126:398-412. [PMID: 34161139 DOI: 10.1152/jn.00169.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In insects the tactile sense is important for near-range orientation and is involved in various behaviors. Nocturnal insects, such as the stick insect Carausius morosus, continuously explore their surroundings by actively moving their antennae when walking. Upon antennal contact with objects, stick insects show a targeted front-leg movement. As this reaction occurs within 40 ms, descending transfer of information from the brain to the thorax needs to be fast. So far, a number of descending interneurons have been described that may be involved in this reach-to-grasp behavior. One of these is the contralateral ON-type velocity-sensitive neuron (cONv). cONv was found to encode antennal joint-angle velocity during passive movement. Here, we characterize the transient response properties of cONv, including its dependence on joint angle range and direction. As antennal hair field afferent terminals were shown to arborize close to cONv dendrites, we test whether antennal hair fields contribute to the joint-angle velocity encoding of cONv. To do so, we conducted bilateral extracellular recordings of both cONv interneurons per animal before and after hair field ablations. Our results show that cONv responses are highly transient, with velocity-dependent differences in delay and response magnitude. As yet, the steady state activity level was maintained until the stop of antennal movement, irrespective of movement velocity. Hair field ablation caused a moderate but significant reduction of movement-induced cONv firing rate by up to 40%. We conclude that antennal proprioceptive hair fields contribute to the velocity-tuning of cONv, though further antennal mechanoreceptors must be involved, too.NEW & NOTEWORTHY Active tactile exploration and tactually induced behaviors are important for many animals. They require descending information transfer about tactile sensor movement to thoracic networks. Here, we investigate response properties and afferent input to the identified descending interneuron cONv in stick insects. cONv may be involved in tactually induced reach-to-grasp movements. We show that cONv response delay, transient and steady state are velocity-dependent and that antennal proprioceptive hair fields contribute to the velocity encoding of cONv.
Collapse
Affiliation(s)
- Bianca Jaske
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Gaëtan Lepreux
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center of Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center of Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Büscher TH, Gorb SN. Complementary effect of attachment devices in stick insects (Phasmatodea). ACTA ACUST UNITED AC 2019; 222:jeb.209833. [PMID: 31727762 DOI: 10.1242/jeb.209833] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
Abstract
Stick insects are well adapted in their locomotion to various surfaces and topographies of natural substrates. Single pad measurements characterised the pretarsal arolia of these insects as shear-sensitive adhesive pads and the tarsal euplantulae as load-sensitive friction pads. Different attachment microstructures on the euplantulae reveal an adaptation of smooth euplantulae to smooth surfaces and nubby eupantulae to a broader range of surface roughness. However, how different attachment pads and claws work in concert and how strong the contribution of different structures is to the overall attachment performance remains unclear. We therefore assessed combinatory effects in the attachment system of two stick insect species with different types of euplantular microstructures by analysing their usage in various posture situations and the performance on different levels of substrate roughness. For comparison, we provide attachment force data of the whole attachment system. The combination of claws, arolia and euplantulae provides mechanical interlocking on rough surfaces, adhesion and friction on smooth surfaces in different directions, and facilitates attachment on different inclines and on a broad range of surface roughness, with the least performance in the range 0.3-1.0 µm. On smooth surfaces, stick insects use arolia always, but employ euplantulae if the body weight can generate load on them (upright, wall). On structured surfaces, claws enable mechanical interlocking at roughnesses higher than 12 µm. On less-structured surfaces, the attachment strength depends on the use of pads and, corroborating earlier studies, favours smooth pads on smooth surfaces, but nubby euplantulae on micro-rough surfaces.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
6
|
Dürr V, Schilling M. Transfer of Spatial Contact Information Among Limbs and the Notion of Peripersonal Space in Insects. Front Comput Neurosci 2018; 12:101. [PMID: 30618693 PMCID: PMC6305554 DOI: 10.3389/fncom.2018.00101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Internal representation of far-range space in insects is well established, as it is necessary for navigation behavior. Although it is likely that insects also have an internal representation of near-range space, the behavioral evidence for the latter is much less evident. Here, we estimate the size and shape of the spatial equivalent of a near-range representation that is constituted by somatosensory sampling events. To do so, we use a large set of experimental whole-body motion capture data on unrestrained walking, climbing and searching behavior in stick insects of the species Carausius morosus to delineate ‘action volumes’ and ‘contact volumes’ for both antennae and all six legs. As these volumes are derived from recorded sampling events, they comprise a volume equivalent to a representation of coinciding somatosensory and motor activity. Accordingly, we define this volume as the peripersonal space of an insect. It is of immediate behavioral relevance, because it comprises all potential external object locations within the action range of the body. In a next step, we introduce the notion of an affordance space as that part of peripersonal space within which contact-induced spatial estimates lie within the action ranges of more than one limb. Because the action volumes of limbs overlap in this affordance space, spatial information from one limb can be used to control the movement of another limb. Thus, it gives rise to an affordance as known for contact-induced reaching movements and spatial coordination of footfall patterns in stick insects. Finally, we probe the computational properties of the experimentally derived affordance space for pairs of neighboring legs. This is done by use of artificial neural networks that map the posture of one leg into a target posture of another leg with identical foot position.
Collapse
Affiliation(s)
- Volker Dürr
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Cluster of Excellence Cognitive Interactive Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Malte Schilling
- Cluster of Excellence Cognitive Interactive Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Goldammer J, Dürr V. Proprioceptive input to a descending pathway conveying antennal postural information: Terminal organisation of antennal hair field afferents. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:465-481. [PMID: 30076912 DOI: 10.1016/j.asd.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/27/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Like several other arthropod species, stick insects use their antennae for tactile exploration of the near-range environment and for spatial localisation of touched objects. More specifically, Carausius morosus continuously moves its antennae during locomotion and reliably responds to antennal contact events with directed movements of a front leg. Here we investigate the afferent projection patterns of antennal hair fields (aHF), proprioceptors known to encode antennal posture and movement, and to be involved in antennal movement control. We show that afferents of all seven aHF of C. morosus have terminal arborisations in the dorsal lobe (DL) of the cerebral (=supraoesophageal) ganglion, and descending collaterals that terminate in a characteristic part of the gnathal (=suboesophageal) ganglion. Despite differences of functional roles among aHF, terminal arborisation patterns show no topological arrangement according to segment specificity or direction of movement. In the DL, antennal motoneuron neurites show arborizations in proximity to aHF afferent terminals. Despite the morphological similarity of single mechanoreceptors of aHF and adjacent tactile hairs on the pedicel and flagellum, we find a clear separation of proprioceptive and exteroceptive mechanosensory neuropils in the cerebral ganglion. Moreover, we also find this functional separation in the gnathal ganglion.
Collapse
Affiliation(s)
- Jens Goldammer
- Animal Physiology and Neurobiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| | - Volker Dürr
- Dept. Biological Cybernetics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
8
|
Rajabi H, Shafiei A, Darvizeh A, Gorb SN, Dürr V, Dirks JH. Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration. J R Soc Interface 2018; 15:rsif.2018.0246. [PMID: 30045891 DOI: 10.1098/rsif.2018.0246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/04/2018] [Indexed: 11/12/2022] Open
Abstract
Active tactile exploration behaviour is constrained to a large extent by the morphological and biomechanical properties of the animal's somatosensory system. In the model organism Carausius morosus, the main tactile sensory organs are long, thin, seemingly delicate, but very robust antennae. Previous studies have shown that these antennae are compliant under contact, yet stiff enough to maintain a straight shape during active exploration. Overcritical damping of the flagellum, on the other hand, allows for a rapid return to the straight shape after release of contact. Which roles do the morphological and biomechanical adaptations of the flagellum play in determining these special mechanical properties? To investigate this question, we used a combination of biomechanical experiments and numerical modelling. A set of four finite-element (FE) model variants was derived to investigate the effect of the distinct geometrical and material properties of the flagellum on its static (bending) and dynamic (damping) characteristics. The results of our numerical simulations show that the tapered shape of the flagellum had the strongest influence on its static biomechanical behaviour. The annulated structure and thickness gradient affected the deformability of the flagellum to a lesser degree. The inner endocuticle layer of the flagellum was confirmed to be essential for explaining the strongly damped return behaviour of the antenna. By highlighting the significance of two out of the four main structural features of the insect flagellum, our study provides a basis for mechanical design of biomimetic touch sensors tuned to become maximally flexible while quickly resuming a straight shape after contact.
Collapse
Affiliation(s)
- H Rajabi
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - A Shafiei
- Department of Mechanical Engineering, University of Guilan, Rasht, Iran.,Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6
| | - A Darvizeh
- Department of Mechanical Engineering, Anzali Branch, Islamic Azad University, Bandar Anzali, Iran
| | - S N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - V Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - J-H Dirks
- Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany.,Biomimetics-Innovation-Centre, Hochschule Bremen-City University of Applied Sciences, Bremen, Germany
| |
Collapse
|
9
|
Motor flexibility in insects: adaptive coordination of limbs in locomotion and near-range exploration. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2412-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Harischandra N, Krause AF, Dürr V. Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect. Front Comput Neurosci 2015; 9:107. [PMID: 26347644 PMCID: PMC4543877 DOI: 10.3389/fncom.2015.00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/06/2015] [Indexed: 01/07/2023] Open
Abstract
An essential component of autonomous and flexible behavior in animals is active exploration of the environment, allowing for perception-guided planning and control of actions. An important sensory system involved is active touch. Here, we introduce a general modeling framework of Central Pattern Generators (CPGs) for movement generation in active tactile exploration behavior. The CPG consists of two network levels: (i) phase-coupled Hopf oscillators for rhythm generation, and (ii) pattern formation networks for capturing the frequency and phase characteristics of individual joint oscillations. The model captured the natural, quasi-rhythmic joint kinematics as observed in coordinated antennal movements of walking stick insects. Moreover, it successfully produced tactile exploration behavior on a three-dimensional skeletal model of the insect antennal system with physically realistic parameters. The effect of proprioceptor ablations could be simulated by changing the amplitude and offset parameters of the joint oscillators, only. As in the animal, the movement of both antennal joints was coupled with a stable phase difference, despite the quasi-rhythmicity of the joint angle time courses. We found that the phase-lead of the distal scape-pedicel (SP) joint relative to the proximal head-scape (HS) joint was essential for producing the natural tactile exploration behavior and, thus, for tactile efficiency. For realistic movement patterns, the phase-lead could vary within a limited range of 10–30° only. Tests with artificial movement patterns strongly suggest that this phase sensitivity is not a matter of the frequency composition of the natural movement pattern. Based on our modeling results, we propose that a constant phase difference is coded into the CPG of the antennal motor system and that proprioceptors are acting locally to regulate the joint movement amplitude.
Collapse
Affiliation(s)
- Nalin Harischandra
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University Bielefeld, Germany ; Cognitive Interaction Technology Center of Excellence (CITEC), Bielefeld University Bielefeld, Germany
| | - André F Krause
- Cognitive Interaction Technology Center of Excellence (CITEC), Bielefeld University Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University Bielefeld, Germany ; Cognitive Interaction Technology Center of Excellence (CITEC), Bielefeld University Bielefeld, Germany
| |
Collapse
|
11
|
Insect motor control: methodological advances, descending control and inter-leg coordination on the move. Curr Opin Neurobiol 2015; 33:8-15. [DOI: 10.1016/j.conb.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/20/2022]
|
12
|
Theunissen LM, Bekemeier HH, Dürr V. Comparative whole-body kinematics of closely related insect species with different body morphology. ACTA ACUST UNITED AC 2014; 218:340-52. [PMID: 25524984 DOI: 10.1242/jeb.114173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Legged locomotion through natural environments is very complex and variable. For example, leg kinematics may differ strongly between species, but even within the same species it is adaptive and context-dependent. Inter-species differences in locomotion are often difficult to interpret, because both morphological and ecological differences among species may be strong and, as a consequence, confound each other's effects. In order to understand better how body morphology affects legged locomotion, we compare unrestrained whole-body kinematics of three stick insect species with different body proportions, but similar feeding ecology: Carausius morosus, Aretaon asperrimus and Medauroidea extradentata (=Cuniculina impigra). In order to co-vary locomotory context, we introduced a gradually increasing demand for climbing by varying the height of stairs in the setup. The species were similar in many aspects, for example in using distinct classes of steps, with minor differences concerning the spread of corrective short steps. Major differences were related to antenna length, segment lengths of thorax and head, and the ratio of leg length to body length. Whereas all species continuously moved their antennae, only Medauroidea executed high swing movements with its front legs to search for obstacles in the near-range environment. Although all species adjusted their body inclination, the range in which body segments moved differed considerably, with longer thorax segments tending to be moved more. Finally, leg posture, time courses of leg joint angles and intra-leg coordination differed most strongly in long-legged Medauroidea.
Collapse
Affiliation(s)
- Leslie M Theunissen
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany Cognitive Interaction Technology - Center of Excellence, Bielefeld University, Inspiration 1, 33615 Bielefeld, Germany
| | - Holger H Bekemeier
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany Cognitive Interaction Technology - Center of Excellence, Bielefeld University, Inspiration 1, 33615 Bielefeld, Germany
| | - Volker Dürr
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany Cognitive Interaction Technology - Center of Excellence, Bielefeld University, Inspiration 1, 33615 Bielefeld, Germany
| |
Collapse
|
13
|
Grant RA, Itskov PM, Towal RB, Prescott TJ. Active touch sensing: finger tips, whiskers, and antennae. Front Behav Neurosci 2014; 8:50. [PMID: 24600364 PMCID: PMC3929833 DOI: 10.3389/fnbeh.2014.00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 02/01/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Robyn A Grant
- Division of Biology and Conservation Ecology, Manchester Metropolitan University Manchester, UK
| | | | | | - Tony J Prescott
- Department of Psychology, University of Sheffield Sheffield, UK
| |
Collapse
|
14
|
Theunissen LM, Vikram S, Dürr V. Spatial coordination of foot contacts in unrestrained climbing insects. J Exp Biol 2014; 217:3242-53. [DOI: 10.1242/jeb.108167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Animals that live in a spatially complex environment such as the canopy of a tree, constantly need to find reliable foothold in three-dimensional (3D) space. In multi-legged animals, spatial coordination among legs is thought to improve efficiency of finding foothold by avoiding searching-movements in trailing legs. In stick insects, a "targeting mechanism" has been described that guides foot-placement of hind and middle legs according to the position of their leading ipsilateral leg. So far, this mechanism was shown for standing and tethered walking animals on horizontal surfaces. Here, we investigate the efficiency of this mechanism in spatial limb coordination of unrestrained climbing animals. For this, we recorded whole-body kinematics of freely climbing stick insects and analyzed foot placement in 3D space. We found that touch-down positions of adjacent legs were highly correlated in all three spatial dimensions, revealing 3D coordinate transfer among legs. Furthermore, targeting precision depended on the position of the leading leg. A second objective was to test the importance of sensory information transfer between legs. For this, we ablated a proprioceptive hair field signaling the levation of the leg. After ablation, the operated leg swung higher and performed unexpected searching-movements. Furthermore, targeting of the ipsilateral trailing leg was less precise in antero-posterior and in dorso-ventral directions. Our results reveal that the targeting mechanism is used by unrestrained climbing stick insects in 3D space and that information from the trochanteral hair field is used in ipsilateral spatial coordination among legs.
Collapse
|
15
|
Ache JM, Dürr V. Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway. J Neurophysiol 2013; 110:2099-112. [DOI: 10.1152/jn.00281.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Much like mammals use their whiskers, insects use their antennae for tactile near-range orientation during locomotion. Stick insects rapidly transfer spatial information about antennal touch location to the front legs, allowing for aimed reach-to-grasp movements. This adaptive behavior requires a spatial coordinate transformation from “antennal contact space” to “leg posture space.” Therefore, a neural pathway must convey proprioceptive and tactile information about antennal posture and contact site to thoracic motor networks. Here we analyze proprioceptive encoding properties of descending interneurons (DINs) that convey information about antennal posture and movement to the thoracic ganglia. On the basis of response properties of 110 DINs to imposed movement of the distal antennal joint, we distinguish five functional DIN groups according to their sensitivity to three parameters: movement direction, movement velocity, and antennal joint angle. These groups are simple position-sensitive DINs, which signal the antennal joint angle; dynamic position-sensitive DINs, which signal the joint angle with strong dependence on movement; unspecific movement-sensitive DINs, which signal movement but not the velocity, position, or direction of movement; and ON- and OFF-type velocity-sensitive DINs. The activity of the latter two groups is increased/attenuated during antennal movement, with the spike rate increasing/decreasing linearly with antennal joint angle velocity. Some movement-sensitive DINs convey spikes to the thorax within 11 ms, suggesting a rapid, direct pathway from antennal mechanosensory to thoracic motor networks. We discuss how the population of DINs could provide the neural basis for the intersegmental spatial coordinate transfer between a touch sensor of the head and thoracic motor networks.
Collapse
Affiliation(s)
- Jan M. Ache
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany; and
- Cognitive Interaction Technology—Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany; and
- Cognitive Interaction Technology—Center of Excellence, Bielefeld University, Bielefeld, Germany
| |
Collapse
|