1
|
Bartling MT, Brandt A, Hollert H, Vilcinskas A. Current Insights into Sublethal Effects of Pesticides on Insects. Int J Mol Sci 2024; 25:6007. [PMID: 38892195 PMCID: PMC11173082 DOI: 10.3390/ijms25116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The effect of pesticides on insects is often discussed in terms of acute and chronic toxicity, but an important and often overlooked aspect is the impact of sublethal doses on insect physiology and behavior. Pesticides can influence various physiological parameters of insects, including the innate immune system, development, and reproduction, through a combination of direct effects on specific exposed tissues and the modification of behaviors that contribute to health and reproductive success. Such behaviors include mobility, feeding, oviposition, navigation, and the ability to detect pheromones. Pesticides also have a profound effect on insect learning and memory. The precise effects depend on many different factors, including the insect species, age, sex, caste, physiological condition, as well as the type and concentration of the active ingredients and the exposure route. More studies are needed to assess the effects of different active ingredients (and combinations thereof) on a wider range of species to understand how sublethal doses of pesticides can contribute to insect decline. This review reflects our current knowledge about sublethal effects of pesticides on insects and advancements in the development of innovative methods to detect them.
Collapse
Affiliation(s)
- Merle-Theresa Bartling
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Annely Brandt
- Bee Institute Kirchhain, Landesbetrieb Landwirtschaft Hessen, Erlenstr. 9, 35274 Kirchhain, Germany;
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany;
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
2
|
Strelevitz H, Tiraboschi E, Haase A. Associative Learning of Quantitative Mechanosensory Stimuli in Honeybees. INSECTS 2024; 15:94. [PMID: 38392513 PMCID: PMC10889140 DOI: 10.3390/insects15020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 02/24/2024]
Abstract
The proboscis extension response (PER) has been widely used to evaluate honeybees' (Apis mellifera) learning and memory abilities, typically by using odors and visual cues for the conditioned stimuli. Here we asked whether honeybees could learn to distinguish between different magnitudes of the same type of stimulus, given as two speeds of air flux. By taking advantage of a novel automated system for administering PER experiments, we determined that the bees were highly successful when the lower air flux was rewarded and less successful when the higher flux was rewarded. Importantly, since our method includes AI-assisted analysis, we were able to consider subthreshold responses at a high temporal resolution; this analysis revealed patterns of rapid generalization and slowly acquired discrimination between the rewarded and unrewarded stimuli, as well as indications that the high air flux may have been mildly aversive. The learning curve for these mechanosensory stimuli, at least when the lower flux is rewarded, more closely mimics prior data from olfactory PER studies rather than visual ones, possibly in agreement with recent findings that the insect olfactory system is also sensitive to mechanosensory information. This work demonstrates a new modality to be used in PER experiments and lays the foundation for deeper exploration of honeybee cognitive processes when posed with complex learning challenges.
Collapse
Affiliation(s)
- Heather Strelevitz
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, 38068 Rovereto, Italy
| | - Ettore Tiraboschi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, 38068 Rovereto, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, 38068 Rovereto, Italy
- Department of Physics, University of Trento, 38123 Povo, Italy
| |
Collapse
|
3
|
Honeybee Cognition as a Tool for Scientific Engagement. INSECTS 2021; 12:insects12090842. [PMID: 34564282 PMCID: PMC8471026 DOI: 10.3390/insects12090842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Global scientific literacy can be improved through widespread and effective community engagement by researchers. We propose honeybees (Apis mellifera) as a public engagement tool due to widespread awareness of colony collapse and the bees’ importance in food production. Moreover, their cognitive abilities make for engaging experiments. Their relative ease of cultivation means that studies can be performed cost-effectively, especially when partnering with local apiarists. Using a proxy for honeybee learning, a group of non-specialist high-school-aged participants obtained data suggesting that caffeine, but not dopamine, improved learning. This hands-on experience facilitated student understanding of the scientific method, factors that shape learning and the importance of learning for colony health. Abstract Apis mellifera (honeybees) are a well-established model for the study of learning and cognition. A robust conditioning protocol, the olfactory conditioning of the proboscis extension response (PER), provides a powerful but straightforward method to examine the impact of varying stimuli on learning performance. Herein, we provide a protocol that leverages PER for classroom-based community or student engagement. Specifically, we detail how a class of high school students, as part of the Ryukyu Girls Outreach Program, examined the effects of caffeine and dopamine on learning performance in honeybees. Using a modified version of the PER conditioning protocol, they demonstrated that caffeine, but not dopamine, significantly reduced the number of trials required for a successful conditioning response. In addition to providing an engaging and educational scientific activity, it could be employed, with careful oversight, to garner considerable reliable data examining the effects of varying stimuli on honeybee learning.
Collapse
|
4
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
5
|
Pratavieira M, da Silva Menegasso AR, Roat T, Malaspina O, Palma MS. In Situ Metabolomics of the Honeybee Brain: The Metabolism of l-Arginine through the Polyamine Pathway in the Proboscis Extension Response (PER). J Proteome Res 2020; 19:832-844. [PMID: 31859515 DOI: 10.1021/acs.jproteome.9b00653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proboscis extension response (PER) reflex may be used to condition the pairing of an odor with sucrose, which is applied to the antennae, in experiments to induce learning, where the odor represents a conditioned stimulus, while sucrose represents an unconditioned stimulus. A series of studies have been conducted on honeybees, relating learning and memory acquisition/retrieval using the PER as a strategy for accessing their ability to exhibit an unconditioned stimulus; however, the major metabolic processes involved in the PER are not well known. Thus, the aim of this investigation is profiling the metabolome of the honeybee brain involved in the PER. In this study, a semiquantitative approach of matrix-assisted laser desorption ionization (MALDI) mass spectral imaging (MSI) was used to profile the most abundant metabolites of the honeybee brain that support the PER. It was reported that execution of the PER requires the metabolic transformations of arginine, ornithine, and lysine as substrates for the production of putrescine, cadaverine, spermine, spermidine, 1,3-diaminopropane, and γ-aminobutyric acid (GABA). Considering the global metabolome of the brain of honeybee workers, the PER requires the consumption of large amounts of cadaverine and 1,3-diaminopropane, in parallel with the biosynthesis of high amounts of spermine, spermidine, and ornithine. To exhibit the PER, the brain of honeybee workers processes the conversion of l-arginine and l-lysine through the polyamine pathway, with different regional metabolomic profiles at the individual neuropil level. The outcomes of this study using this metabolic route as a reference are indicating that the antennal lobes and the calices (medial and lateral) were the most active brain regions for supporting the PER.
Collapse
Affiliation(s)
- Marcel Pratavieira
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| | - Anally Ribeiro da Silva Menegasso
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| | - Thaisa Roat
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| | - Osmar Malaspina
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| | - Mario Sergio Palma
- Department of Biology, Center of the Study of Social Insects, Institute of Biosciences , University of São Paulo State (UNESP) , Rio Claro , SP CEP 13506-900 , Brazil
| |
Collapse
|
6
|
Leonard RJ, Pettit TJ, Irga P, McArthur C, Hochuli DF. Acute exposure to urban air pollution impairs olfactory learning and memory in honeybees. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1056-1062. [PMID: 31512041 DOI: 10.1007/s10646-019-02081-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
While the ecological effects of pesticides have been well studied in honeybees, it is unclear to what extent other anthropogenic contaminants such as air pollution may also negatively affect bee cognition and behaviour. To answer this question, we assessed the impacts of acute exposure to four ecologically relevant concentrations of a common urban air pollutant-diesel generated air pollution on honeybee odour learning and memory using a conditioned proboscis extension response assay. The proportion of bees that successfully learnt odours following direct air pollution exposure was significantly lower in bees exposed to low, medium and high air pollutant concentrations, than in bees exposed to current ambient levels. Furthermore, short- and long-term odour memory was significantly impaired in bees exposed to low medium and high air pollutant concentrations than in bees exposed to current ambient levels. These results demonstrate a clear and direct cognitive cost of air pollution. Given learning and memory play significant roles in foraging, we suggest air pollution will have increasing negative impacts on the ecosystem services bees provide and may add to the current threats such as pesticides, mites and disease affecting colony fitness.
Collapse
Affiliation(s)
- Ryan J Leonard
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Thomas J Pettit
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Peter Irga
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Clare McArthur
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dieter F Hochuli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
7
|
Bartling MT, Vilcinskas A, Lee KZ. Sub-Lethal Doses of Clothianidin Inhibit the Conditioning and Biosensory Abilities of the Western Honeybee Apis mellifera. INSECTS 2019; 10:insects10100340. [PMID: 31614672 PMCID: PMC6836177 DOI: 10.3390/insects10100340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Insects play an important role in the stability of ecosystems by fulfilling key functions such as pollination and nutrient cycling, as well as acting as prey for amphibians, reptiles, birds and mammals. The global decline of insects is therefore a cause for concern, and the role of chemical pesticides must be examined carefully. The lethal effects of insecticides are well understood, but sub-lethal concentrations have not been studied in sufficient detail. We therefore used the western honeybee Apis mellifera as a model to test the effect of the neonicotinoid insecticide clothianidin on the movement, biosensory abilities and odor-dependent conditioning of insects, titrating from lethal to sub-lethal doses. Bees treated with sub-lethal doses showed no significant movement impairment compared to untreated control bees, but their ability to react to an aversive stimulus was inhibited. These results show that clothianidin is not only highly toxic to honeybees, but can, at lower doses, also disrupt the biosensory capabilities of survivors, probably reducing fitness at the individual level. In our study, sub-lethal doses of clothianidin altered the biosensory abilities of the honeybee; possible consequences at the colony level are discussed.
Collapse
Affiliation(s)
- Merle T Bartling
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
| | - Kwang-Zin Lee
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
| |
Collapse
|
8
|
Marchal P, Villar ME, Geng H, Arrufat P, Combe M, Viola H, Massou I, Giurfa M. Inhibitory learning of phototaxis by honeybees in a passive-avoidance task. ACTA ACUST UNITED AC 2019; 26:1-12. [PMID: 31527185 PMCID: PMC6749929 DOI: 10.1101/lm.050120.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/02/2019] [Indexed: 11/29/2022]
Abstract
Honeybees are a standard model for the study of appetitive learning and memory. Yet, fewer attempts have been performed to characterize aversive learning and memory in this insect and uncover its molecular underpinnings. Here, we took advantage of the positive phototactic behavior of bees kept away from the hive in a dark environment and established a passive-avoidance task in which they had to suppress positive phototaxis. Bees placed in a two-compartment box learned to inhibit spontaneous attraction to a compartment illuminated with blue light by associating and entering into that chamber with shock delivery. Inhibitory learning resulted in an avoidance memory that could be retrieved 24 h after training and that was specific to the punished blue light. The memory was mainly operant but involved a Pavlovian component linking the blue light and the shock. Coupling conditioning with transcriptional analyses in key areas of the brain showed that inhibitory learning of phototaxis leads to an up-regulation of the dopaminergic receptor gene Amdop1 in the calyces of the mushroom bodies, consistently with the role of dopamine signaling in different forms of aversive learning in insects. Our results thus introduce new perspectives for uncovering further cellular and molecular underpinnings of aversive learning and memory in bees. Overall, they represent an important step toward comparative learning studies between the appetitive and the aversive frameworks.
Collapse
Affiliation(s)
- Paul Marchal
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Maria Eugenia Villar
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Haiyang Geng
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France.,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Patrick Arrufat
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Maud Combe
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Haydée Viola
- Instituto de Biología Celular y Neurociencias (IBCN) "Dr Eduardo De Robertis," CONICET-Universidad de Buenos Aires, Buenos Aires (C1121ABG), Argentina
| | - Isabelle Massou
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse cedex 09, France.,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Nouvian M, Galizia CG. Aversive Training of Honey Bees in an Automated Y-Maze. Front Physiol 2019; 10:678. [PMID: 31231238 PMCID: PMC6558987 DOI: 10.3389/fphys.2019.00678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Honeybees have remarkable learning abilities given their small brains, and have thus been established as a powerful model organism for the study of learning and memory. Most of our current knowledge is based on appetitive paradigms, in which a previously neutral stimulus (e.g., a visual, olfactory, or tactile stimulus) is paired with a reward. Here, we present a novel apparatus, the yAPIS, for aversive training of walking honey bees. This system consists in three arms of equal length and at 120° from each other. Within each arm, colored lights (λ = 375, 465 or 520 nm) or odors (here limonene or linalool) can be delivered to provide conditioned stimuli (CS). A metal grid placed on the floor and roof delivers the punishment in the form of mild electric shocks (unconditioned stimulus, US). Our training protocol followed a fully classical procedure, in which the bee was exposed sequentially to a CS paired with shocks (CS+) and to another CS not punished (CS-). Learning performance was measured during a second phase, which took advantage of the Y-shape of the apparatus and of real-time tracking to present the bee with a choice situation, e.g., between the CS+ and the CS-. Bees reliably chose the CS- over the CS+ after only a few training trials with either colors or odors, and retained this memory for at least a day, except for the shorter wavelength (λ = 375 nm) that produced mixed results. This behavior was largely the result of the bees avoiding the CS+, as no evidence was found for attraction to the CS-. Interestingly, trained bees initially placed in the CS+ spontaneously escaped to a CS- arm if given the opportunity, even though they could never do so during the training. Finally, honey bees trained with compound stimuli (color + odor) later avoided either components of the CS+. Thus, the yAPIS is a fast, versatile and high-throughput way to train honey bees in aversive paradigms. It also opens the door for controlled laboratory experiments investigating bimodal integration and learning, a field that remains in its infancy.
Collapse
Affiliation(s)
- Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Leonard RJ, Vergoz V, Proschogo N, McArthur C, Hochuli DF. Petrol exhaust pollution impairs honey bee learning and memory. OIKOS 2018. [DOI: 10.1111/oik.05405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ryan J. Leonard
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| | - Vanina Vergoz
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| | - Nicholas Proschogo
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| | - Clare McArthur
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| | - Dieter F. Hochuli
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| |
Collapse
|
11
|
Langeswaran K, Jeyaraman J, Mariadasse R, Soorangkattan S. Insights from the Molecular modeling, docking analysis of illicit drugs and Bomb Compounds with Honey Bee Odorant Binding Proteins (OBPs). Bioinformation 2018; 14:219-231. [PMID: 30108419 PMCID: PMC6077825 DOI: 10.6026/97320630014219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
Analysis of honeybee PBPs is of interest in the development of Biosensor applications. We described the predicted binding of 19 such
compounds with 43-honey bee OBPs using molecular modeling, docking and phylogenetic analysis. Therefore, training the honeybees
using preferred compounds formulate the bees to identify the illicit drugs and bomb compounds. Consequently, high docking score
produced complex such OBP16-N-Phenyl-2-Napthalamine (-12.25k/mol), 3BJH-Crack Cocaine (-11.75k/mol), OBP10-Methadone (-
11.71k/mol), 1TUJ-Dronobinal Cannabis (-11.66k/mol), OBP13-Plasticizer (-11.27k/mol) and OBP24-Ecstasy (-10.89 k/mol) can be
used to identify the compounds using biosensor application. The chemical reaction of the compounds for olfactory sensory was
analyzed using DFT (Density Functional Theory) studies. Some of these compounds show high binding OBPs across distant
phylogeny.
Collapse
|
12
|
Steijven K, Spaethe J, Steffan-Dewenter I, Härtel S. Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food. PeerJ 2017; 5:e3858. [PMID: 29085743 PMCID: PMC5657415 DOI: 10.7717/peerj.3858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research.
Collapse
Affiliation(s)
- Karin Steijven
- Department of Animal Ecology & Tropical Biology, University of Würzburg, Würzburg, Germany.,Lectorat Bee Health-Domain Animals and Business, Van Hall Larenstein, University of Applied Sciences, Leeuwarden, Netherlands
| | - Johannes Spaethe
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Würzburg, Germany
| | | | - Stephan Härtel
- Department of Animal Ecology & Tropical Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Plath JA, Entler BV, Kirkerud NH, Schlegel U, Galizia CG, Barron AB. Different Roles for Honey Bee Mushroom Bodies and Central Complex in Visual Learning of Colored Lights in an Aversive Conditioning Assay. Front Behav Neurosci 2017; 11:98. [PMID: 28611605 PMCID: PMC5447682 DOI: 10.3389/fnbeh.2017.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
The honey bee is an excellent visual learner, but we know little about how and why it performs so well, or how visual information is learned by the bee brain. Here we examined the different roles of two key integrative regions of the brain in visual learning: the mushroom bodies and the central complex. We tested bees' learning performance in a new assay of color learning that used electric shock as punishment. In this assay a light field was paired with electric shock. The other half of the conditioning chamber was illuminated with light of a different wavelength and not paired with shocks. The unrestrained bee could run away from the light stimulus and thereby associate one wavelength with punishment, and the other with safety. We compared learning performance of bees in which either the central complex or mushroom bodies had been transiently inactivated by microinjection of the reversible anesthetic procaine. Control bees learned to escape the shock-paired light field and to spend more time in the safe light field after a few trials. When ventral lobe neurons of the mushroom bodies were silenced, bees were no longer able to associate one light field with shock. By contrast, silencing of one collar region of the mushroom body calyx did not alter behavior in the learning assay in comparison to control treatment. Bees with silenced central complex neurons did not leave the shock-paired light field in the middle trials of training, even after a few seconds of being shocked. We discussed how mushroom bodies and the central complex both contribute to aversive visual learning with an operant component.
Collapse
Affiliation(s)
- Jenny A Plath
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biology, University of KonstanzKonstanz, Germany
| | - Brian V Entler
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biology, University of ScrantonScranton, PA, United States
| | - Nicholas H Kirkerud
- Department of Biology, University of KonstanzKonstanz, Germany.,International Max-Planck Research School for Organismal Biology, University of KonstanzKonstanz, Germany
| | - Ulrike Schlegel
- Department of Biology, University of KonstanzKonstanz, Germany.,Department of Biosciences, University of OsloOslo, Norway
| | | | - Andrew B Barron
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia
| |
Collapse
|
14
|
Kirkerud NH, Schlegel U, Giovanni Galizia C. Aversive Learning of Colored Lights in Walking Honeybees. Front Behav Neurosci 2017; 11:94. [PMID: 28588460 PMCID: PMC5438982 DOI: 10.3389/fnbeh.2017.00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
The honeybee has been established as an important model organism in studies on visual learning. So far the emphasis has been on appetitive conditioning, simulating floral discrimination, and homing behavior, where bees perform exceptionally well in visual discrimination tasks. However, bees in the wild also face dangers, and recent findings suggest that what is learned about visual percepts is highly context dependent. A stimulus that follows an unpleasant period, is associated with the feeling of relief- or safety in humans and animals, thus acquiring a positive meaning. Whether this is also the case in honeybees is still an open question. Here, we conditioned bees aversively in a walking arena where each half was illuminated by light of a specific wavelength and intensity, one of which was combined with electric shocks. In this paradigm, the bees' preferences to the different lights were modified through nine conditioning trials, forming robust escape, and avoidance behaviors. Strikingly, we found that while 465 nm (human blue) and 590 nm (human yellow) lights both could acquire negative valences (inducing avoidance response), 525 nm (human green) light could not. This indicates that green light holds an innate meaning of safety which is difficult to overrule even through intensive aversive conditioning. The bees had slight initial preferences to green over the blue and the yellow lights, which could be compensated by adjusting light intensity. However, this initial bias played a minor role while the chromatic properties were the most salient characteristics of the light stimuli during aversive conditioning. Moreover, bees could learn the light signaling safety, revealing the existence of a relief component in aversive operant conditioning, similar to what has been observed in other animals.
Collapse
Affiliation(s)
- Nicholas H Kirkerud
- Neurobiology, University of KonstanzKonstanz, Germany.,International Max-Planck Research School for Organismal Biology, University of KonstanzKonstanz, Germany
| | - Ulrike Schlegel
- Neurobiology, University of KonstanzKonstanz, Germany.,Department of Biosciences, University of OsloOslo, Norway
| | | |
Collapse
|
15
|
Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction. Sci Rep 2015. [PMID: 26212690 PMCID: PMC4648454 DOI: 10.1038/srep12504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.
Collapse
|
16
|
A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Sci Rep 2015; 5:10989. [PMID: 26086769 PMCID: PMC4471740 DOI: 10.1038/srep10989] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/01/2015] [Indexed: 01/27/2023] Open
Abstract
Xenobiotics such as the neonicotinoid pesticide, imidacloprid, are used globally, but their effects on native bee species are poorly understood. We studied the effects of sublethal doses of imidacloprid on olfactory learning in the native honey bee species, Apis cerana, an important pollinator of agricultural and native plants throughout Asia. We provide the first evidence that imidacloprid can impair learning in A. cerana workers exposed as adults or as larvae. Adults that ingested a single imidacloprid dose as low as 0.1 ng/bee had significantly reduced olfactory learning acquisition, which was 1.6-fold higher in control bees. Longer-term learning (1-17 h after the last learning trial) was also impaired. Bees exposed as larvae to a total dose of 0.24 ng/bee did not have reduced survival to adulthood. However, these larval-treated bees had significantly impaired olfactory learning when tested as adults: control bees exhibited up to 4.8-fold better short-term learning acquisition, though longer-term learning was not affected. Thus, sublethal cognitive deficits elicited by neonicotinoids on a broad range of native bee species deserve further study.
Collapse
|
17
|
Schott M, Klein B, Vilcinskas A. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera). PLoS One 2015; 10:e0128528. [PMID: 26083377 PMCID: PMC4471073 DOI: 10.1371/journal.pone.0128528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/28/2015] [Indexed: 12/29/2022] Open
Abstract
Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog “alert” is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.
Collapse
Affiliation(s)
- Matthias Schott
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Birgit Klein
- Forensic Institute - Section Narcotics/Chemistry, State Office of Criminal Investigation Hessen, Wiesbaden, Germany
| | - Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- * E-mail:
| |
Collapse
|
18
|
Wehmann HN, Gustav D, Kirkerud NH, Galizia CG. The sound and the fury--bees hiss when expecting danger. PLoS One 2015; 10:e0118708. [PMID: 25747702 PMCID: PMC4351880 DOI: 10.1371/journal.pone.0118708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 12/02/2022] Open
Abstract
Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.
Collapse
Affiliation(s)
| | - David Gustav
- Neurobiology, Universität Konstanz, Konstanz, Germany
| | - Nicholas H. Kirkerud
- Neurobiology, Universität Konstanz, Konstanz, Germany
- International Max-Planck Research School for Organismal Biology, Universität Konstanz, Konstanz, Germany
| | | |
Collapse
|