1
|
Yu Y, Setogawa T, Matsumoto J, Nishimaru H, Nishijo H. Neural basis of topographical disorientation in the primate posterior cingulate gyrus based on a labeled graph. AIMS Neurosci 2022; 9:373-394. [PMID: 36329903 PMCID: PMC9581735 DOI: 10.3934/neuroscience.2022021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with lesions in the posterior cingulate gyrus (PCG), including the retrosplenial cortex (RSC) and posterior cingulate cortex (PCC), cannot navigate in familiar environments, nor draw routes on a 2D map of the familiar environments. This suggests that the topographical knowledge of the environments (i.e., cognitive map) to find the right route to a goal is represented in the PCG, and the patients lack such knowledge. However, theoretical backgrounds in neuronal levels for these symptoms in primates are unclear. Recent behavioral studies suggest that human spatial knowledge is constructed based on a labeled graph that consists of topological connections (edges) between places (nodes), where local metric information, such as distances between nodes (edge weights) and angles between edges (node labels), are incorporated. We hypothesize that the population neural activity in the PCG may represent such knowledge based on a labeled graph to encode routes in both 3D environments and 2D maps. Since no previous data are available to test the hypothesis, we recorded PCG neuronal activity from a monkey during performance of virtual navigation and map drawing-like tasks. The results indicated that most PCG neurons responded differentially to spatial parameters of the environments, including the place, head direction, and reward delivery at specific reward areas. The labeled graph-based analyses of the data suggest that the population activity of the PCG neurons represents the distance traveled, locations, movement direction, and navigation routes in the 3D and 2D virtual environments. These results support the hypothesis and provide a neuronal basis for the labeled graph-based representation of a familiar environment, consistent with PCG functions inferred from the human clinicopathological studies.
Collapse
Affiliation(s)
- Yang Yu
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Yao L, Zhou L, Qian Z, Zhu Q, Liu Y, Zhang Y, Li W, Xing L. Exploring the impact of 3D movie watching on the brain source activities and energy consumption by ESI and fNIRS. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Chinzorig C, Nishimaru H, Matsumoto J, Takamura Y, Berthoz A, Ono T, Nishijo H. Rat Retrosplenial Cortical Involvement in Wayfinding Using Visual and Locomotor Cues. Cereb Cortex 2021; 30:1985-2004. [PMID: 31667498 DOI: 10.1093/cercor/bhz183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retrosplenial cortex (RSC) has been implicated in wayfinding using different sensory cues. However, the neural mechanisms of how the RSC constructs spatial representations to code an appropriate route under different sensory cues are unknown. In this study, rat RSC neurons were recorded while rats ran on a treadmill affixed to a motion stage that was displaced along a figure-8-shaped track. The activity of some RSC neurons increased during specific directional displacements, while the activity of other neurons correlated with the running speed on the treadmill regardless of the displacement directions. Elimination of visual cues by turning off the room lights and/or locomotor cues by turning off the treadmill decreased the activity of both groups of neurons. The ensemble activity of the former group of neurons discriminated displacements along the common central path of different routes in the track, even when visual or locomotor cues were eliminated where different spatial representations must be created based on different sensory cues. The present results provide neurophysiological evidence of an RSC involvement in wayfinding under different spatial representations with different sensory cues.
Collapse
Affiliation(s)
- Choijiljav Chinzorig
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Alain Berthoz
- Center for Interdisciplinary Research in Biology, Collège de France, Paris Cedex 05, France
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Deantoni M, Villemonteix T, Balteau E, Schmidt C, Peigneux P. Post-Training Sleep Modulates Topographical Relearning-Dependent Resting State Activity. Brain Sci 2021; 11:brainsci11040476. [PMID: 33918574 PMCID: PMC8069225 DOI: 10.3390/brainsci11040476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Continuation of experience-dependent neural activity during offline sleep and wakefulness episodes is a critical component of memory consolidation. Using functional magnetic resonance imaging (fMRI), offline consolidation effects have been evidenced probing behavioural and neurophysiological changes during memory retrieval, i.e., in the context of task practice. Resting state fMRI (rsfMRI) further allows investigating the offline evolution of recently learned information without the confounds of online task-related effects. We used rsfMRI to investigate sleep-related changes in seed-based resting functional connectivity (FC) and amplitude of low frequency fluctuations (ALFF) after spatial navigation learning and relearning. On Day 1, offline resting state activity was measured immediately before and after topographical learning in a virtual town. On Day 4, it was measured again before and after relearning in an extended version of the town. Navigation-related activity was also recorded during target retrieval, i.e., online. Participants spent the first post-training night under regular sleep (RS) or sleep deprivation (SD) conditions. Results evidence FC and ALFF changes in task-related neural networks, indicating the continuation of navigation-related activity in the resting state. Although post-training sleep did not modulate behavioural performance, connectivity analyses evidenced increased FC after post-training SD between navigation-related brain structures during relearning in the extended environment. These results suggest that memory traces were less efficiently consolidated after post-learning SD, eventually resulting in the use of compensatory brain resources to link previously stored spatial elements with the newly presented information.
Collapse
Affiliation(s)
- Michele Deantoni
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium; (M.D.); (T.V.)
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
| | - Thomas Villemonteix
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium; (M.D.); (T.V.)
- Psychopathology and Neuropsychology Lab, Paris 8 University, Rue de la Liberté 2, 93,526 Saint-Denis, France
| | - Evelyne Balteau
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
| | - Christina Schmidt
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
- Psychology and Neurosciences of Cognition (PsyNCog), Université de Liège, Quartier Agora, Place des Orateurs, 3, Bâtiment B33, 4000 Liège, Belgium
| | - Philippe Peigneux
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium; (M.D.); (T.V.)
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
- Correspondence:
| |
Collapse
|