1
|
Ugalde-Muñiz P, Hernández-Luna MG, García-Velasco S, Lugo-Huitrón R, Murcia-Ramírez J, Martínez-Tapia RJ, Noriega-Navarro R, Navarro L. Activation of dopamine D2 receptors attenuates neuroinflammation and ameliorates the memory impairment induced by rapid eye movement sleep deprivation in a murine model. Front Neurosci 2022; 16:988167. [PMID: 36278007 PMCID: PMC9579422 DOI: 10.3389/fnins.2022.988167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The proinflammatory state, which may be induced by sleep deprivation, seems to be a determining factor in the development of neurodegenerative processes. Investigations of mechanisms that help to mitigate the inflammatory effects of sleep disorders are important. A new proposal involves the neurotransmitter dopamine, which may modulate the progression of the immune response by activating receptors expressed on immune cells. This study aimed to determine whether dopamine D2 receptor (D2DR) activation attenuates the proinflammatory response derived from rapid eye movement (REM) sleep deprivation in mice. REM sleep deprivation (RSD) was induced in 2-month-old male CD1 mice using the multiple platform model for three consecutive days; during this period, the D2DR receptor agonist quinpirole (QUIN) was administered (2 mg/kg/day i.p.). Proinflammatory cytokine levels were assessed in serum and homogenates of the brain cortex, hippocampus, and striatum using ELISAs. Long-term memory deficits were identified using the Morris water maze (MWM) and novel object recognition (NOR) tests. Animals were trained until learning criteria were achieved; then, they were subjected to RSD and treated with QUIN for 3 days. Memory evocation was determined afterward. Moreover, we found RSD induced anhedonia, as measured by the sucrose consumption test, which is commonly related to the dopaminergic system. Our data revealed increased levels of proinflammatory cytokines (TNFα and IL-1β) in both the hippocampus and serum from RSD mice. However, QUIN attenuated the increased levels of these cytokines. Furthermore, RSD caused a long-term memory evocation deficit in both the MWM and NOR tests. In contrast, QUIN coadministration during the RSD period significantly improved the performance of the animals. On the other hand, QUIN prevented the anhedonic condition induced by RSD. Based on our results, D2DR receptor activation protects against memory impairment induced by disturbed REM sleep by inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Perla Ugalde-Muñiz
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - María Guadalupe Hernández-Luna
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Stephany García-Velasco
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Rafael Lugo-Huitrón
- Laboratory of Behavioral Neurobiology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jimena Murcia-Ramírez
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Ricardo Jesus Martínez-Tapia
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Roxana Noriega-Navarro
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Luz Navarro
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
- *Correspondence: Luz Navarro,
| |
Collapse
|
2
|
Brozka H, Alexova D, Radostova D, Janikova M, Krajcovic B, Kubík Š, Svoboda J, Stuchlik A. Plasticity-Related Activity in the Hippocampus, Anterior Cingulate, Orbitofrontal, and Prefrontal Cortex Following a Repeated Treatment with D 2/D 3 Agonist Quinpirole. Biomolecules 2021; 11:84. [PMID: 33440912 PMCID: PMC7827652 DOI: 10.3390/biom11010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
Quinpirole (QNP) sensitization is a well-established model of stereotypical checking relevant to obsessive-compulsive disorder. Previously, we found that QNP-treated rats display deficits in hippocampus-dependent tasks. The present study explores the expression of immediate early genes (IEG) during QNP-induced stereotypical checking in the hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and medial prefrontal cortex (mPFC). Adult male rats were injected with QNP (0.5 mg/mL/kg; n = 15) or saline (n = 14) daily for 10 days and exposed to an arena enriched with two objects. Visits to the objects and the corners of the arena were recorded. QNP-treated rats developed an idiosyncratic pattern of visits that persisted across experimental days. On day 11, rats were exposed to the arena twice for 5 min and sacrificed. The expression of IEGs Arc and Homer1a was determined using cellular compartment analysis of temporal activity by fluorescence in situ hybridization. IEG-positive nuclei were counted in the CA1 area of the hippocampus, ACC, OFC, and mPFC. We found significantly fewer IEG-positive nuclei in the CA1 in QNP-treated rats compared to controls. The overlap between IEG expressing neurons was comparable between the groups. We did not observe significant differences in IEG expression between QNP treated and control rats in ACC, OFC, and mPFC. In conclusion, treatment of rats with quinpirole decreases plasticity-related activity in the hippocampus during stereotypical checking.
Collapse
Affiliation(s)
- Hana Brozka
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (D.A.); (D.R.); (M.J.); (B.K.); (Š.K.); (J.S.)
| | - Daniela Alexova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (D.A.); (D.R.); (M.J.); (B.K.); (Š.K.); (J.S.)
- Second Faculty of Medicine, Charles University, 142 20 Prague, Czech Republic
| | - Dominika Radostova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (D.A.); (D.R.); (M.J.); (B.K.); (Š.K.); (J.S.)
- Second Faculty of Medicine, Charles University, 142 20 Prague, Czech Republic
| | - Martina Janikova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (D.A.); (D.R.); (M.J.); (B.K.); (Š.K.); (J.S.)
- First Faculty of Medicine, Charles University, 142 20 Prague, Czech Republic
| | - Branislav Krajcovic
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (D.A.); (D.R.); (M.J.); (B.K.); (Š.K.); (J.S.)
- Third Faculty of Medicine, Charles University, 142 20 Prague, Czech Republic
| | - Štěpán Kubík
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (D.A.); (D.R.); (M.J.); (B.K.); (Š.K.); (J.S.)
| | - Jan Svoboda
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (D.A.); (D.R.); (M.J.); (B.K.); (Š.K.); (J.S.)
| | - Ales Stuchlik
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (D.A.); (D.R.); (M.J.); (B.K.); (Š.K.); (J.S.)
| |
Collapse
|
3
|
Affiliation(s)
- Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
4
|
Hoffman KL, Cano-Ramírez H. Lost in translation? A critical look at the role that animal models of obsessive compulsive disorder play in current drug discovery strategies. Expert Opin Drug Discov 2017; 13:211-220. [DOI: 10.1080/17460441.2018.1417379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Hugo Cano-Ramírez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
5
|
Svoboda J, Popelikova A, Stuchlik A. Drugs Interfering with Muscarinic Acetylcholine Receptors and Their Effects on Place Navigation. Front Psychiatry 2017; 8:215. [PMID: 29170645 PMCID: PMC5684124 DOI: 10.3389/fpsyt.2017.00215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been found to regulate many diverse functions, ranging from motivation and feeding to spatial navigation, an important and widely studied type of cognitive behavior. Systemic administration of non-selective antagonists of mAChRs, such as scopolamine or atropine, have been found to have adverse effects on a vast majority of place navigation tasks. However, many of these results may be potentially confounded by disruptions of functions other than spatial learning and memory. Although studies with selective antimuscarinics point to mutually opposite effects of M1 and M2 receptors, their particular contribution to spatial cognition is still poorly understood, partly due to a lack of truly selective agents. Furthermore, constitutive knock-outs do not always support results from selective antagonists. For modeling impaired spatial cognition, the scopolamine-induced amnesia model still maintains some limited validity, but there is an apparent need for more targeted approaches such as local intracerebral administration of antagonists, as well as novel techniques such as optogenetics focused on cholinergic neurons and chemogenetics aimed at cells expressing metabotropic mAChRs.
Collapse
Affiliation(s)
- Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Popelikova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Servaes S, Glorie D, Verhaeghe J, Wyffels L, Stroobants S, Staelens S. [18F]-FDG PET neuroimaging in rats with quinpirole-induced checking behavior as a model for obsessive compulsive disorder. Psychiatry Res Neuroimaging 2016; 257:31-38. [PMID: 27771554 DOI: 10.1016/j.pscychresns.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 09/19/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Stijn Servaes
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - Dorien Glorie
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| |
Collapse
|
7
|
Stuchlik A, Radostová D, Hatalova H, Vales K, Nekovarova T, Koprivova J, Svoboda J, Horacek J. Validity of Quinpirole Sensitization Rat Model of OCD: Linking Evidence from Animal and Clinical Studies. Front Behav Neurosci 2016; 10:209. [PMID: 27833539 PMCID: PMC5080285 DOI: 10.3389/fnbeh.2016.00209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/17/2016] [Indexed: 11/15/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with 1–3% prevalence. OCD is characterized by recurrent thoughts (obsessions) and repetitive behaviors (compulsions). The pathophysiology of OCD remains unclear, stressing the importance of pre-clinical studies. The aim of this article is to critically review a proposed animal model of OCD that is characterized by the induction of compulsive checking and behavioral sensitization to the D2/D3 dopamine agonist quinpirole. Changes in this model have been reported at the level of brain structures, neurotransmitter systems and other neurophysiological aspects. In this review, we consider these alterations in relation to the clinical manifestations in OCD, with the aim to discuss and evaluate axes of validity of this model. Our analysis shows that some axes of validity of quinpirole sensitization model (QSM) are strongly supported by clinical findings, such as behavioral phenomenology or roles of brain structures. Evidence on predictive validity is contradictory and ambiguous. It is concluded that this model is useful in the context of searching for the underlying pathophysiological basis of the disorder because of the relatively strong biological similarities with OCD.
Collapse
Affiliation(s)
- Ales Stuchlik
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences Prague, Czech Republic
| | - Dominika Radostová
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences Prague, Czech Republic
| | - Hana Hatalova
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences Prague, Czech Republic
| | - Karel Vales
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of SciencesPrague, Czech Republic; National Institute of Mental HealthKlecany, Czech Republic
| | - Tereza Nekovarova
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of SciencesPrague, Czech Republic; National Institute of Mental HealthKlecany, Czech Republic
| | - Jana Koprivova
- National Institute of Mental Health Klecany, Czech Republic
| | - Jan Svoboda
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences Prague, Czech Republic
| | - Jiri Horacek
- National Institute of Mental Health Klecany, Czech Republic
| |
Collapse
|
8
|
Hatalova H, Radostova D, Pistikova A, Vales K, Stuchlik A. Detrimental effect of clomipramine on hippocampus-dependent learning in an animal model of obsessive-compulsive disorder induced by sensitization with d2/d3 agonist quinpirole. Behav Brain Res 2016; 317:210-217. [PMID: 27659555 DOI: 10.1016/j.bbr.2016.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 11/27/2022]
Abstract
Quinpirole (QNP) sensitization is one of the commonly used animal models of obsessive-compulsive disorder (OCD). We have previously shown that QNP-sensitized animals display a robust cognitive flexibility deficit in an active place avoidance task with reversal in Carousel maze. This is in line with numerous human studies showing deficits in cognitive flexibility in OCD patients. Here we explored the effect of clomipramine, an effective OCD drug that attenuates compulsive checking in QNP, on sensitized rats in acquisition and reversal performances in an active place avoidance task. We found that the addition of clomipramine to QNP-sensitization impairs acquisition learning to a degree that reversal learning could not be tested. In a hippocampal-independent two-way active avoidance task clomipramine did not have an effect on acquisition learning in QNP-treated rats; suggesting that the detrimental effect of clomipramine is hippocampus based. We also tested the effect of risperidone in QNP-sensitized animals, which is not effective in OCD treatment. Risperidone also marginally impaired acquisition learning of QNP-sensitized animals, but not reversal. Moreover, we explored the effect of the augmentation of clomipramine treatment with risperidone in QNP-sensitized rats- a common step in treating SRI-unresponsive OCD patients. Only under this treatment regime animals were unimpaired in both acquisition and reversal learning. Augmentation of SRI with neuroleptics therefore could be beneficial for improving cognitive flexibility, and possibly be considered a first line of treatment in patients with reduced cognitive flexibility.
Collapse
Affiliation(s)
- Hana Hatalova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Dominika Radostova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Prague, Czech Republic
| | - Adela Pistikova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Prague, Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Ales Stuchlik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
9
|
Rodent models of obsessive compulsive disorder: Evaluating validity to interpret emerging neurobiology. Neuroscience 2016; 345:256-273. [PMID: 27646291 DOI: 10.1016/j.neuroscience.2016.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/03/2016] [Accepted: 09/08/2016] [Indexed: 11/21/2022]
Abstract
Obsessive Compulsive Disorder (OCD) is a common neuropsychiatric disorder with unknown molecular underpinnings. Identification of genetic and non-genetic risk factors has largely been elusive, primarily because of a lack of power. In contrast, neuroimaging has consistently implicated the cortico-striatal-thalamo-cortical circuits in OCD. Pharmacological treatment studies also show specificity, with consistent response of OCD symptoms to chronic treatment with serotonin reuptake inhibitors; although most patients are left with residual impairment. In theory, animal models could provide a bridge from the neuroimaging and pharmacology data to an understanding of pathophysiology at the cellular and molecular level. Several mouse models have been proposed using genetic, immunological, pharmacological, and optogenetic tools. These experimental model systems allow testing of hypotheses about the origins of compulsive behavior. Several models have generated behavior that appears compulsive-like, particularly excessive grooming, and some have demonstrated response to chronic serotonin reuptake inhibitors, establishing both face validity and predictive validity. Construct validity is more difficult to establish in the context of a limited understanding of OCD risk factors. Our current models may help us to dissect the circuits and molecular pathways that can elicit OCD-relevant behavior in rodents. We can hope that this growing understanding, coupled with developing technology, will prepare us when robust OCD risk factors are better understood.
Collapse
|
10
|
Petrasek T, Skurlova M, Maleninska K, Vojtechova I, Kristofikova Z, Matuskova H, Sirova J, Vales K, Ripova D, Stuchlik A. A Rat Model of Alzheimer's Disease Based on Abeta42 and Pro-oxidative Substances Exhibits Cognitive Deficit and Alterations in Glutamatergic and Cholinergic Neurotransmitter Systems. Front Aging Neurosci 2016; 8:83. [PMID: 27148049 PMCID: PMC4837344 DOI: 10.3389/fnagi.2016.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most serious human, medical, and socioeconomic burdens. Here we tested the hypothesis that a rat model of AD (Samaritan; Taconic Pharmaceuticals, USA) based on the application of amyloid beta42 (Abeta42) and the pro-oxidative substances ferrous sulfate heptahydrate and L-buthionine-(S, R)-sulfoximine, will exhibit cognitive deficits and disruption of the glutamatergic and cholinergic systems in the brain. Behavioral methods included the Morris water maze (MWM; long-term memory version) and the active allothetic place avoidance (AAPA) task (acquisition and reversal), testing spatial memory and different aspects of hippocampal function. Neurochemical methods included testing of the NR1/NR2A/NR2B subunits of NMDA receptors in the frontal cortex and CHT1 transporters in the hippocampus, in both cases in the right and left hemisphere separately. Our results show that Samaritan rats(™) exhibit marked impairment in both the MWM and active place avoidance tasks, suggesting a deficit of spatial learning and memory. Moreover, Samaritan rats exhibited significant changes in NR2A expression and CHT1 activity compared to controls rats, mimicking the situation in patients with early stage AD. Taken together, our results corroborate the hypothesis that Samaritan rats are a promising model of AD in its early stages.
Collapse
Affiliation(s)
- Tomas Petrasek
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of SciencesPrague, Czech Republic; National Institute of Mental HealthKlecany, Czech Republic
| | - Martina Skurlova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences Prague, Czech Republic
| | - Kristyna Maleninska
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences Prague, Czech Republic
| | - Iveta Vojtechova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences Prague, Czech Republic
| | | | - Hana Matuskova
- National Institute of Mental Health Klecany, Czech Republic
| | - Jana Sirova
- National Institute of Mental Health Klecany, Czech Republic
| | - Karel Vales
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences Prague, Czech Republic
| | - Daniela Ripova
- National Institute of Mental Health Klecany, Czech Republic
| | - Ales Stuchlik
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences Prague, Czech Republic
| |
Collapse
|
11
|
André MAE, Manahan-Vaughan D. Involvement of Dopamine D1/D5 and D2 Receptors in Context-Dependent Extinction Learning and Memory Reinstatement. Front Behav Neurosci 2016; 9:372. [PMID: 26834599 PMCID: PMC4720788 DOI: 10.3389/fnbeh.2015.00372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/24/2015] [Indexed: 01/01/2023] Open
Abstract
Dopamine contributes to the regulation of higher order information processing and executive control. It is important for memory consolidation processes, and for the adaptation of learned responses based on experience. In line with this, under aversive learning conditions, application of dopamine receptor antagonists prior to extinction result in enhanced memory reinstatement. Here, we investigated the contribution of the dopaminergic system to extinction and memory reinstatement (renewal) of an appetitive spatial learning task in rodents. Rats were trained for 3 days in a T-maze (context "A") to associate a goal arm with a food reward, despite low reward probability (acquisition phase). On day 4, extinction learning (unrewarded) occurred, that was reinforced by a context change ("B"). On day 5, re-exposure to the (unrewarded) "A" context took place (renewal of context "A", followed by extinction of context "A"). In control animals, significant extinction occurred on day 4, that was followed by an initial memory reinstatement (renewal) on day 5, that was, in turn, succeeded by extinction of renewal. Intracerebral treatment with a D1/D5-receptor antagonist prior to the extinction trials, elicited a potent enhancement of extinction in context "B". By contrast, a D1/D5-agonist impaired renewal in context "A". Extinction in the "A" context on day 5 was unaffected by the D1/D5-ligands. Treatment with a D2-receptor antagonist prior to extinction had no overall effect on extinction in context "B" or renewal in context "A", although extinction of the renewal effect was impaired on day 5, compared to controls. Taken together, these data suggest that dopamine acting on the D1/D5-receptor modulates both acquisition and consolidation of context-dependent extinction. By contrast, the D2-receptor may contribute to context-independent aspects of this kind of extinction learning.
Collapse
Affiliation(s)
- Marion Agnès Emma André
- Medical Faculty, Department of Neurophysiology, Ruhr University BochumBochum, Germany; International Graduate School for Neuroscience, Ruhr University BochumBochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University BochumBochum, Germany; International Graduate School for Neuroscience, Ruhr University BochumBochum, Germany
| |
Collapse
|
12
|
Ballester González J, Dvorkin-Gheva A, Silva C, Foster JA, Szechtman H. Nucleus accumbens core and pathogenesis of compulsive checking. Behav Pharmacol 2015; 26:200-16. [PMID: 25426580 PMCID: PMC5398318 DOI: 10.1097/fbp.0000000000000112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/16/2014] [Indexed: 11/26/2022]
Abstract
To investigate the role of the nucleus accumbens core (NAc) in the development of quinpirole-induced compulsive checking, rats received an excitotoxic lesion of NAc or sham lesion and were injected with quinpirole (0.5 mg/kg) or saline; development of checking behavior was monitored for 10 biweekly tests. The results showed that even after the NAc lesion, quinpirole still induced compulsive checking, suggesting that the pathogenic effects produced by quinpirole lie outside the NAc. Although the NAc lesion did not prevent the induction of compulsive checking, it altered how quickly it develops, suggesting that the NAc normally contributes toward the induction of compulsive checking. Saline-treated rats with an NAc lesion were hyperactive, but did not develop compulsive checking, indicating that hyperactivity by itself is not sufficient for the pathogenesis of compulsive checking. It is proposed that compulsive checking is the exaggerated output of a security motivation system and that the NAc serves as a neural hub for coordinating the orderly activity of neural modules of this motivational system. Evidence is considered suggesting that the neurobiological condition for the pathogenesis of compulsive checking is two-fold: activation of dopamine D2/D3 receptors without concurrent stimulation of D1-like receptors and long-term plastic changes related to quinpirole-induced sensitization.
Collapse
Affiliation(s)
| | - Anna Dvorkin-Gheva
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Charmaine Silva
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jane A. Foster
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Henry Szechtman
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Stuchlik A, Sumiyoshi T. Cognitive deficits in schizophrenia and other neuropsychiatric disorders: convergence of preclinical and clinical evidence. Front Behav Neurosci 2014; 8:444. [PMID: 25566009 PMCID: PMC4275052 DOI: 10.3389/fnbeh.2014.00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/09/2014] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ales Stuchlik
- Institute of Physiology Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Tomiki Sumiyoshi
- National Center of Neurology and Psychiatry, National Center Hospital , Tokyo , Japan
| |
Collapse
|
14
|
Lobellová V, Brichtová E, Petrásek T, Valeš K, Stuchlík A. Higher doses of (+)MK-801 (dizocilpine) induced mortality and procedural but not cognitive deficits in delayed testing in the active place avoidance with reversal on the Carousel. Physiol Res 2014; 64:269-75. [PMID: 25317686 DOI: 10.33549/physiolres.932832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Schizophrenia is a devastating disorder affecting 1 % of the world's population. An important role in the study of this disease is played by animal models. Since there is evidence that acute psychotic episodes can have consequences on later cognitive functioning, the present study has investigated the effects of a single systemic application of higher doses of (+)MK-801 (3 mg/kg and 5 mg/kg) to adult male Long-Evans rats from the Institute's breeding colony on delayed testing in the active place avoidance task with reversal on the Carousel (a rotating arena). Besides significant mortality due to the injections, a disruption of procedural functions in active place avoidance, after the dose 5 mg/kg was observed. It was concluded that Long-Evans rats from our breeding colony do not represent a suitable biomodel for studying the effects of single high-dose NMDA antagonists.
Collapse
Affiliation(s)
- V Lobellová
- Institute of Physiology CAS, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|