1
|
Lambert I, Tramoni-Negre E, Lagarde S, Pizzo F, Trebuchon-Da Fonseca A, Bartolomei F, Felician O. Accelerated long-term forgetting in focal epilepsy: Do interictal spikes during sleep matter? Epilepsia 2021; 62:563-569. [PMID: 33476422 DOI: 10.1111/epi.16823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Accelerated long-term forgetting (ALF) is a particular form of amnesia mostly encountered in focal epilepsy, particularly in temporal lobe epilepsy. This type of memory loss is characterized by an impairment of long-term consolidation of declarative memory, and its mechanisms remain poorly understood. In particular, the respective contribution of lesion, seizures, interictal epileptic discharges, and sleep is still debated. Here, we provide an overview of the relationships intertwining epilepsy, sleep, and memory consolidation and, based on recent findings from intracranial electroencephalographic recordings, we propose a model of ALF pathophysiology that integrates the differential role of interictal spikes during wakefulness and sleep. This model provides a framework to account for the different timescales at which ALF may occur.
Collapse
Affiliation(s)
- Isabelle Lambert
- System Neurosciences Institute, Aix Marseille University, INSERM, INS, Marseille, France.,Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Eve Tramoni-Negre
- System Neurosciences Institute, Aix Marseille University, INSERM, INS, Marseille, France.,Neurology and Neuropsychology Department, Timone Hospital, Marseille, France
| | - Stanislas Lagarde
- System Neurosciences Institute, Aix Marseille University, INSERM, INS, Marseille, France.,Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Francesca Pizzo
- System Neurosciences Institute, Aix Marseille University, INSERM, INS, Marseille, France.,Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Agnès Trebuchon-Da Fonseca
- System Neurosciences Institute, Aix Marseille University, INSERM, INS, Marseille, France.,Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Fabrice Bartolomei
- System Neurosciences Institute, Aix Marseille University, INSERM, INS, Marseille, France.,Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Olivier Felician
- System Neurosciences Institute, Aix Marseille University, INSERM, INS, Marseille, France.,Neurology and Neuropsychology Department, Timone Hospital, Marseille, France
| |
Collapse
|
2
|
Joplin S, Webster R, Gill D, Barton B, Lawson JA, Mandalis A, Sabaz M, Gascoigne M, Lah S. Accelerated long-term forgetting in children with genetic generalized epilepsy: The temporal trajectory and contribution of executive skills. Epilepsy Behav 2020; 113:107471. [PMID: 33142199 DOI: 10.1016/j.yebeh.2020.107471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Long-term memory, which is critical for social and vocational functioning, is impaired in children with genetic generalized epilepsy (GGE). In this study, we examined the relationship between the temporal pattern of long-term forgetting for visual and verbal materials and executive skills in children with GGE. METHOD Thirty-two children, 17 with GGE and 25 typically developing age-matched controls completed standardized tests of short-term memory (recall after a 30-minute delay), executive skills, and experimental long-term memory tasks (one verbal and one visual) involving recall after one short (30-minute), and two long (1-day, 2-week) delays. RESULTS On the long-term visual memory task, children with GGE performed comparably with typically developing children at a 30-minute delay (p = .298), although obtained lower object placement accuracy score, at 1 day (p = .039) and at 2 weeks (p = .022) relative to typically developing children. On the verbal task, the between-group difference was not significant at any delay. In children with GGE, poorer object placement accuracy at two weeks correlated with lower visuospatial short-term memory (r = -0.624, p = .005) and verbal working memory (r = -0.448, p = .041). CONCLUSIONS This study provided several novel findings. For the first time, accelerated long-term forgetting (ALF) was found in long-term visual memory in children with GGE, despite comparable learning and recall at 30 min. Study results indicated that deficits in long-term visual memory are present after one day, increase over time, and may relate to reduced executive skills. Our findings can be used to inform our understanding of the temporal trajectory of ALF and contribution of executive skills.
Collapse
Affiliation(s)
- Samantha Joplin
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Richard Webster
- T. Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, Australia
| | - Deepak Gill
- T. Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, Australia
| | - Belinda Barton
- Children's Hospital Education Research Institute, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Australia
| | - John A Lawson
- Department of Neurology, Sydney Children's Hospital, Sydney, Australia
| | - Anna Mandalis
- Department of Psychology, Sydney Children's Hospital, Sydney, Australia
| | - Mark Sabaz
- Department of Psychology, Sydney Children's Hospital, Sydney, Australia
| | - Michael Gascoigne
- School of Psychology, The University of Sydney, NSW 2006, Australia; School of Psychological Sciences, Australian College of Applied Psychology, Sydney, Australia
| | - Suncica Lah
- School of Psychology, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
"Switchboard" malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102300. [PMID: 32554322 PMCID: PMC7303672 DOI: 10.1016/j.nicl.2020.102300] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
The thalamus is a key cerebral hub relaying a multitude of corticoefferent and corticoafferent connections and mediating distinct extrapyramidal, sensory, cognitive and behavioural functions. While the thalamus consists of dozens of anatomically well-defined nuclei with distinctive physiological roles, existing imaging studies in motor neuron diseases typically evaluate the thalamus as a single structure. Based on the unique cortical signatures observed in ALS and PLS, we hypothesised that similarly focal thalamic involvement may be observed if the nuclei are individually evaluated. A prospective imaging study was undertaken with 100 patients with ALS, 33 patients with PLS and 117 healthy controls to characterise the integrity of thalamic nuclei. ALS patients were further stratified for the presence of GGGGCC hexanucleotide repeat expansions in C9orf72. The thalamus was segmented into individual nuclei to examine their volumetric profile. Additionally, thalamic shape deformations were evaluated by vertex analyses and focal density alterations were examined by region-of-interest morphometry. Our data indicate that C9orf72 negative ALS patients and PLS patients exhibit ventral lateral and ventral anterior involvement, consistent with the ‘motor’ thalamus. Degeneration of the sensory nuclei was also detected in C9orf72 negative ALS and PLS. Both ALS groups and the PLS cohort showed focal changes in the mediodorsal-paratenial-reuniens nuclei, which mediate memory and executive functions. PLS patients exhibited distinctive thalamic changes with marked pulvinar and lateral geniculate atrophy compared to both controls and C9orf72 negative ALS. The considerable ventral lateral and ventral anterior pathology detected in both ALS and PLS support the emerging literature of extrapyramidal dysfunction in MND. The involvement of sensory nuclei is consistent with sporadic reports of sensory impairment in MND. The unique thalamic signature of PLS is in line with the distinctive clinical features of the phenotype. Our data confirm phenotype-specific patterns of thalamus involvement in motor neuron diseases with the preferential involvement of nuclei mediating motor and cognitive functions. Given the selective involvement of thalamic nuclei in ALS and PLS, future biomarker and natural history studies in MND should evaluate individual thalamic regions instead overall thalamic changes.
Collapse
|
4
|
St-Laurent M, Rosenbaum RS, Olsen RK, Buchsbaum BR. Representation of viewed and recalled film clips in patterns of brain activity in a person with developmental amnesia. Neuropsychologia 2020; 142:107436. [PMID: 32194085 DOI: 10.1016/j.neuropsychologia.2020.107436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/03/2020] [Accepted: 03/10/2020] [Indexed: 01/29/2023]
Abstract
As clear memories transport us back into the past, the brain also revives prior patterns of neural activity, a phenomenon known as neural reactivation. While growing evidence indicates a link between neural reactivation and typical variations in memory performance in healthy individuals, it is unclear how and to what extent reactivation is disrupted by a memory disorder. The current study characterizes neural reactivation in a case of amnesia using Multivoxel Pattern Analysis (MVPA). We tested NC, an individual with developmental amnesia linked to a diencephalic stroke, and 19 young adult controls on a functional magnetic resonance imaging (fMRI) task during which participants viewed and recalled short videos multiple times. An encoding classifier trained and tested to identify videos based on brain activity patterns elicited at perception revealed superior classification in NC. The enhanced consistency in stimulus representation we observed in NC at encoding was accompanied by an absence of multivariate repetition suppression, which occurred over repeated viewing in the controls. Another recall classifier trained and tested to identify videos during mental replay indicated normal levels of classification in NC, despite his poor memory for stimulus content. However, a cross-condition classifier trained on perception trials and tested on mental replay trials-a strict test of reactivation-revealed significantly poorer classification in NC. Thus, while NC's brain activity was consistent and stimulus-specific during mental replay, this specificity did not reflect the reactivation of patterns elicited at perception to the same extent as controls. Fittingly, we identified brain regions for which activity supported stimulus representation during mental replay to a greater extent in NC than in controls. This activity was not modeled on perception, suggesting that compensatory patterns of representation based on generic knowledge can support consistent mental constructs when memory is faulty. Our results reveal several ways in which amnesia impacts distributed patterns of stimulus representation during encoding and retrieval.
Collapse
Affiliation(s)
- Marie St-Laurent
- Rotman Research Institute at Baycrest, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada.
| | - R Shayna Rosenbaum
- Rotman Research Institute at Baycrest, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada; Department of Psychology, York University, Faculty of Health, Behavioural Sciences Building, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Rosanna K Olsen
- Rotman Research Institute at Baycrest, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St.George Street, 4th Floor, Toronto, ON, M5S 3G3, Canada
| | - Bradley R Buchsbaum
- Rotman Research Institute at Baycrest, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St.George Street, 4th Floor, Toronto, ON, M5S 3G3, Canada
| |
Collapse
|
5
|
Grayson-Collins J, Gascoigne MB, Barton B, Webster R, Gill D, Lah S. Longitudinal study of accelerated long-term forgetting in children with genetic generalized epilepsy: Evidence of ongoing deficits. Cortex 2019; 110:5-15. [DOI: 10.1016/j.cortex.2017.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/21/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
6
|
Accelerated long-term forgetting after TIA or minor stroke: A more sensitive measure for detecting subtle memory dysfunction? Cortex 2019; 110:150-156. [DOI: 10.1016/j.cortex.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 12/04/2017] [Accepted: 04/03/2018] [Indexed: 11/19/2022]
|
7
|
Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus. J Neurosci 2018; 39:434-444. [PMID: 30459228 DOI: 10.1523/jneurosci.2107-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022] Open
Abstract
Forming reliable memories requires coordinated activity within distributed brain networks. At present, neural mechanisms underlying systems-level consolidation of declarative memory beyond the hippocampal-prefrontal interactions remain largely unexplored. The mediodorsal thalamic nucleus (MD) is reciprocally connected with the medial prefrontal cortex (mPFC) and also receives inputs from parahippocampal regions. The MD may thus modulate functional connectivity between the hippocampus and the mPFC at different stages of information processing. Here, we characterized, in freely behaving Sprague Dawley male rats, the MD neural activity around hippocampal ripples, indicators of memory replay and hippocampal-cortical information transfer. Overall, the MD firing rate was transiently (0.76 ± 0.06 s) decreased around ripples, with the MD activity suppression preceding the ripple onset for 0.41 ± 0.04 s (range, 0.01-0.95 s). The degree of MD modulation correlated with ripple amplitude, differed across behavioral states, and also depended on the dynamics of hippocampal-cortical population activity. The MD suppression was the strongest and the most consistent during awake ripples. During non-rapid eye movement sleep, MD firing rate decreased around spindle-uncoupled ripples, but increased around spindle-coupled ripples. Our results suggest a competitive interaction between the thalamocortical and hippocampal-cortical networks supporting "on-line" and "off-line" information processing, respectively. We hypothesize that thalamic activity suppression during spindle-uncoupled ripples is favorable for memory replay, as it reduces interference from sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer. Both predictions need to be tested in future experiments.SIGNIFICANCE STATEMENT Systems mechanisms of declarative memory consolidation beyond the hippocampal-prefrontal interactions remain largely unexplored. The connectivity of the mediodorsal thalamic nucleus (MD) with extrahippocampal regions and with medial prefrontal cortex underlies its role in execution of diverse cognitive functions. However, little is known about the MD involvement in "off-line" consolidation. We found that MD neural activity was transiently suppressed around hippocampal ripples, except for ripples co-occurring with sleep spindles, when the MD activity was elevated. The thalamic activity suppression at times of spindle-uncoupled ripples may be favorable for memory replay, as it reduces interference with sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer.
Collapse
|
8
|
Pergola G, Danet L, Pitel AL, Carlesimo GA, Segobin S, Pariente J, Suchan B, Mitchell AS, Barbeau EJ. The Regulatory Role of the Human Mediodorsal Thalamus. Trends Cogn Sci 2018; 22:1011-1025. [PMID: 30236489 PMCID: PMC6198112 DOI: 10.1016/j.tics.2018.08.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
The function of the human mediodorsal thalamic nucleus (MD) has so far eluded a clear definition in terms of specific cognitive processes and tasks. Although it was at first proposed to play a role in long-term memory, a set of recent studies in animals and humans has revealed a more complex, and broader, role in several cognitive functions. The MD seems to play a multifaceted role in higher cognitive functions together with the prefrontal cortex and other cortical and subcortical brain areas. Specifically, we propose that the MD is involved in the regulation of cortical networks especially when the maintenance and temporal extension of persistent activity patterns in the frontal lobe areas are required.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy.
| | - Lola Danet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS 31024, France; CHU Toulouse Purpan, Neurology Department, Toulouse 31059, France
| | - Anne-Lise Pitel
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Giovanni A Carlesimo
- Department of Systems Medicine, Tor Vergata University and S. Lucia Foundation, Rome, Italy
| | - Shailendra Segobin
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS 31024, France; CHU Toulouse Purpan, Neurology Department, Toulouse 31059, France
| | - Boris Suchan
- Clinical Neuropsychology, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Equivalent contribution as last authors.
| | - Emmanuel J Barbeau
- Centre de recherche Cerveau et Cognition, UMR5549, Université de Toulouse - CNRS, Toulouse 31000, France; Equivalent contribution as last authors
| |
Collapse
|
9
|
Wang P, Jia X, Zhang M, Cao Y, Zhao Z, Shan Y, Ma Q, Qian T, Wang J, Lu J, Li K. Correlation of Longitudinal Gray Matter Volume Changes and Motor Recovery in Patients After Pontine Infarction. Front Neurol 2018; 9:312. [PMID: 29910762 PMCID: PMC5992285 DOI: 10.3389/fneur.2018.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of motor functional recovery after pontine infarction (PI) remain unclear. Here, we assessed longitudinal changes in gray matter volume (GMV) and examined the relationship between GMV and clinical outcome. Fifteen patients with unilateral PI underwent magnetic resonance imaging and neurological exams five times during a period of 6 months. Another 15 healthy participants were enrolled as the normal control (NC) group and were examined with the same protocol. The MR exam included routine protocol and a 3D T1-weighted magnetization-prepared rapid acquisition gradient echo scan. Changes in GMV were assessed using voxel-based morphometry. Furthermore, the correlations between GMV changes in regions of interest and clinical scores were assessed. Compared with NCs, the decreased GMVs in the contralateral uvula of cerebellum and the ipsilateral tuber of cerebellum were detected at third month after stroke onset. At the sixth month after stroke onset, the decreased GMVs were detected in the contralateral culmen of cerebellum, putamen, as well as in the ipsilateral tuber/tonsil of cerebellum. Compared with NC, the PI group exhibited significant increases in GMV at each follow-up time point relative to stroke onset. Specifically, the significant GMV increase was found in the ipsilateral middle frontal gyrus and ventral anterior nucleus of thalamus at second week after stroke onset. At first month after stroke onset, the increased GMVs in the ipsilateral middle temporal gyrus were detected. The significant GMV increase in the ipsilateral mediodorsal thalamus was noted at third month after stroke onset. At the end of sixth month after stroke onset, the GMV increase was found in the ipsilateral mediodorsal thalamus, superior frontal gyrus, and the contralateral precuneus. Across five times during a period of 6-month, a negative correlation was observed between mean GMV in the contralateral uvula, culmen, putamen, and ipsilateral tuber/tonsil and mean Fugl-Meyer (FM) score. However, mean GMV in the ipsilateral mediodorsal thalamus was positively correlated with mean FM score. Our findings suggest that structural reorganization of the ipsilateral mediodorsal thalamus might contribute to motor functional recovery after PI.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Xiuqin Jia
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Radiology, Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Miao Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yanxiang Cao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhilian Zhao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianyi Qian
- Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Jingjuan Wang
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
10
|
The evolution of accelerated long-term forgetting: Evidence from the TIME study. Cortex 2017; 110:16-36. [PMID: 29122206 PMCID: PMC6330058 DOI: 10.1016/j.cortex.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/10/2017] [Accepted: 09/09/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Accelerated long-term forgetting (ALF) occurs when newly learned information decays faster than normal over extended delays. It has been recognised most frequently in temporal lobe epilepsy, including Transient Epileptic Amnesia (TEA), but can also be drug-induced. Little is known about the evolution of ALF over time and its impacts upon other memory functions, such as autobiographical memory (ABM). Here we investigate the long-term outcome of ALF and ABM in a group of patients with TEA and a single case of baclofen-induced ALF. METHODS Study 1 involved a longitudinal follow-up of 14 patients with TEA over a 10-year period. Patients repeated a neuropsychological battery, three ALF measures (with free recall probed at 30-min and 1-week), and a modified Autobiographical Memory Interview (MAMI). Performance was compared with a group of healthy age-matched controls. In Study 2, patient CS, who previously experienced baclofen-induced ALF, was followed over 4 years, and re-tested now, 18 months after ceasing baclofen. CS repeated a neuropsychological battery, three ALF experimental tasks (each probed after 30 min and 1 week), and a modified autobiographical interview (AI). Her performance was compared with healthy age-matched controls. RESULTS On ALF measures, the TEA group performed significantly below controls, but when analysed individually, 4 of the 7 patients who originally showed ALF no longer did so. In two, this was accompanied by improvements in ABM for recent but not remote memory. Patient CS no longer demonstrated ALF on standard lab-based tests and now appeared to retain new episodic autobiographical events with a similar degree of episodic richness as controls. CONCLUSION Long-term follow up suggests that ALF can resolve, with improvements translating to recent ABM in some cases.
Collapse
|
11
|
Danet L, Pariente J, Eustache P, Raposo N, Sibon I, Albucher JF, Bonneville F, Péran P, Barbeau EJ. Medial thalamic stroke and its impact on familiarity and recollection. eLife 2017; 6:28141. [PMID: 28837019 PMCID: PMC5595429 DOI: 10.7554/elife.28141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Models of recognition memory have postulated that the mammillo-thalamic tract (MTT)/anterior thalamic nucleus (AN) complex would be critical for recollection while the Mediodorsal nucleus (MD) of the thalamus would support familiarity and indirectly also be involved in recollection (Aggleton et al., 2011). 12 patients with left thalamic stroke underwent a neuropsychological assessment, three verbal recognition memory tasks assessing familiarity and recollection each using different procedures and a high-resolution structural MRI. Patients showed poor recollection on all three tasks. In contrast, familiarity was spared in each task. No patient had significant AN lesions. Critically, a subset of 5 patients had lesions of the MD without lesions of the MTT. They also showed impaired recollection but preserved familiarity. Recollection is therefore impaired following MD damage, but familiarity is not. This suggests that models of familiarity, which assign a critical role to the MD, should be reappraised.
Collapse
Affiliation(s)
- Lola Danet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Brain and Cognition Research Centre, CNRS, University of Toulouse Paul Sabatier, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Pierre Eustache
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France
| | - Nicolas Raposo
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Igor Sibon
- Department of Diagnostic and Therapeutic Neuroimaging, University of Bordeaux, Bordeaux University Hospital, Bordeaux, France
| | - Jean-François Albucher
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Fabrice Bonneville
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France
| | - Emmanuel J Barbeau
- Brain and Cognition Research Centre, CNRS, University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
12
|
Ali M, Cholvin T, Muller MA, Cosquer B, Kelche C, Cassel JC, Pereira de Vasconcelos A. Environmental enrichment enhances systems-level consolidation of a spatial memory after lesions of the ventral midline thalamus. Neurobiol Learn Mem 2017; 141:108-123. [DOI: 10.1016/j.nlm.2017.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/06/2017] [Indexed: 11/26/2022]
|
13
|
Zimmermann K, Eschen A. Brain regions involved in subprocesses of small-space episodic object-location memory: a systematic review of lesion and functional neuroimaging studies. Memory 2016; 25:487-519. [DOI: 10.1080/09658211.2016.1188965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kathrin Zimmermann
- International Normal Aging and Plasticity Center (INAPIC), University of Zurich, Zurich, Switzerland
- Department of Gerontopsychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Anne Eschen
- International Normal Aging and Plasticity Center (INAPIC), University of Zurich, Zurich, Switzerland
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Zeman A, Hoefeijzers S, Milton F, Dewar M, Carr M, Streatfield C. The GABAB receptor agonist, baclofen, contributes to three distinct varieties of amnesia in the human brain – A detailed case report. Cortex 2016; 74:9-19. [DOI: 10.1016/j.cortex.2015.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/13/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
|
15
|
Danet L, Barbeau EJ, Eustache P, Planton M, Raposo N, Sibon I, Albucher JF, Bonneville F, Peran P, Pariente J. Thalamic amnesia after infarct: The role of the mammillothalamic tract and mediodorsal nucleus. Neurology 2015; 85:2107-15. [PMID: 26567269 PMCID: PMC4691690 DOI: 10.1212/wnl.0000000000002226] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/19/2015] [Indexed: 11/15/2022] Open
Abstract
Objective: To improve current understanding of the mechanisms behind thalamic amnesia, as it is unclear whether it is directly related to damage to specific nuclei, in particular to the anterior or mediodorsal nuclei, or indirectly related to lesions of the mammillothalamic tract (MTT). Methods: We recruited 12 patients with a left thalamic infarction and 25 healthy matched controls. All underwent a comprehensive neuropsychological assessment of verbal and visual memory, executive functions, language, and affect, and a high-resolution structural volumetric MRI scan. Thalamic lesions were manually segmented and automatically localized with a computerized thalamic atlas. As well as comparing patients with controls, we divided patients into subgroups with intact or damaged MTT. Results: Only one patient had a small lesion of the anterior nucleus. Most of the lesions included the mediodorsal (n = 11) and intralaminar nuclei (n = 12). Patients performed worse than controls on the verbal memory tasks, but the 5 patients with intact MTT who showed isolated lesions of the mediodorsal nucleus (MD) only displayed moderate memory impairment. The 7 patients with a damaged MTT performed worse on the verbal memory tasks than those whose MTT was intact. Conclusions: Lesions in the MTT and in the MD result in memory impairment, severely in the case of MTT and to a lesser extent in the case of MD, thus highlighting the roles played by these 2 structures in memory circuits.
Collapse
Affiliation(s)
- Lola Danet
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France.
| | - Emmanuel J Barbeau
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France
| | - Pierre Eustache
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France
| | - Mélanie Planton
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France
| | - Nicolas Raposo
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France
| | - Igor Sibon
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France
| | - Jean-François Albucher
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France
| | - Fabrice Bonneville
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France
| | - Patrice Peran
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France
| | - Jérémie Pariente
- From Inserm (L.D., P.E., M.P., F.B., P.P., J.P.) and Université de Toulouse III, UPS (L.D., P.E., M.P., F.B., P.P., J.P.), Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, and Service de Neurologie, Pôle Neurosciences, CHU Purpan (L.D., M.P., N.R., J.-F.A., F.B., J.P.), Centre Hospitalier Universitaire de Toulouse; Centre de Recherche Cerveau et Cognition (CNRS, CerCO, UMR 5549) (L.D., E.J.B.), Université de Toulouse; and CHU de Bordeaux, Unité Neurovasculaire (I.S.), University of Bordeaux, France
| |
Collapse
|
16
|
Huijgen J, Samson S. The hippocampus: A central node in a large-scale brain network for memory. Rev Neurol (Paris) 2015; 171:204-16. [DOI: 10.1016/j.neurol.2015.01.557] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 11/25/2022]
|