1
|
Porter T, del Valle MM, Kucheryavykh L. Ethnicity-Based Variations in Focal Adhesion Kinase Signaling in Glioblastoma Gene Expression: A Study of the Puerto Rican Hispanic Population. Int J Mol Sci 2024; 25:4947. [PMID: 38732165 PMCID: PMC11084467 DOI: 10.3390/ijms25094947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM), an aggressive form of brain cancer, has a higher incidence in non-Hispanics when compared to the US Hispanic population. Using data from RT-PCR analysis of 21 GBM tissue from Hispanic patients in Puerto Rico, we identified significant correlations in the gene expression of focal adhesion kinase and proline-rich tyrosine kinase (PTK2 and PTK2B) with NGFR (nerve growth factor receptor), PDGFRB (platelet-derived growth factor receptor B), EGFR (epithelial growth factor receptor), and CXCR1 (C-X-C motif chemokine receptor 1). This study further explores these correlations found in gene expression while accounting for sex and ethnicity. Statistically significant (p < 0.05) correlations with an r value > ±0.7 were subsequently contrasted with mRNA expression data acquired from cBioPortal for 323 GBM specimens. Significant correlations in Puerto Rican male patients were found between PTK2 and PTK2B, NGFR, PDGFRB, EGFR, and CXCR1, which did not arise in non-Hispanic male patient data. The data for Puerto Rican female patients showed correlations in PTK2 with PTK2B, NGFR, PDGFRB, and EGFR, all of which did not appear in the data for non-Hispanic female patients. The data acquired from cBioPortal for non-Puerto Rican Hispanic patients supported the correlations found in the Puerto Rican population for both sexes. Our findings reveal distinct correlations in gene expression patterns, particularly involving PTK2, PTK2B, NGFR, PDGFRB, and EGFR among Puerto Rican Hispanic patients when compared to non-Hispanic counterparts.
Collapse
Affiliation(s)
- Tyrel Porter
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | - Miguel Mayol del Valle
- Department of Surgery, Neurosurgery Section, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA
| | - Lilia Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| |
Collapse
|
2
|
Scarth M, Hauger LE, Thorsby PM, Leknes S, Hullstein IR, Westlye LT, Bjørnebekk A. Supraphysiological testosterone levels from anabolic steroid use and reduced sensitivity to negative facial expressions in men. Psychopharmacology (Berl) 2024; 241:701-715. [PMID: 37993638 DOI: 10.1007/s00213-023-06497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
RATIONALE Anabolic-androgenic steroids (AAS) are used to improve physical performance and appearance, but have been associated with deficits in social cognitive functioning. Approximately 30% of people who use AAS develop a dependence, increasing the risk for undesired effects. OBJECTIVES To assess the relationship between AAS use (current/previous), AAS dependence, and the ability to recognize emotional facial expressions, and investigate the potential mediating role of hormone levels. METHODS In total 156 male weightlifters, including those with current (n = 45) or previous (n = 34) AAS use and never-using controls (n = 77), completed a facial Emotion Recognition Task (ERT). Participants were presented with faces expressing one out of six emotions (sadness, happiness, fear, anger, disgust, and surprise) and were instructed to indicate which of the six emotions each face displayed. ERT accuracy and response time were recorded and evaluated for association with AAS use status, AAS dependence, and serum reproductive hormone levels. Mediation models were used to evaluate the mediating role of androgens in the relationship between AAS use and ERT performance. RESULTS Compared to never-using controls, men currently using AAS exhibited lower recognition accuracy for facial emotional expressions, particularly anger (Cohen's d = -0.57, pFDR = 0.03) and disgust (d = -0.51, pFDR = 0.05). Those with AAS dependence (n = 47) demonstrated worse recognition of fear relative to men without dependence (d = 0.58, p = 0.03). Recognition of disgust was negatively correlated with serum free testosterone index (FTI); however, FTI did not significantly mediate the association between AAS use and recognition of disgust. CONCLUSIONS Our findings demonstrate impaired facial emotion recognition among men currently using AAS compared to controls. While further studies are needed to investigate potential mechanisms, our analysis did not support a simple mediation effect of serum FTI.
Collapse
Affiliation(s)
- Morgan Scarth
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Postbox 4959, Nydalen, 0424, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
| | - Lisa Evju Hauger
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Postbox 4959, Nydalen, 0424, Oslo, Norway
| | - Per Medbøe Thorsby
- Hormone laboratory, Department of Medical Biochemistry and Biochemical endocrinology and metabolism research group, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine and University of Oslo, Oslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Ingunn R Hullstein
- Norwegian Doping Control Laboratory, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Astrid Bjørnebekk
- Anabolic Androgenic Steroid Research Group, Section for Clinical Addiction Research, Division of Mental Health and Addiction, Oslo University Hospital, Postbox 4959, Nydalen, 0424, Oslo, Norway
| |
Collapse
|
3
|
Ågmo A. Androgen receptors and sociosexual behaviors in mammals: The limits of generalization. Neurosci Biobehav Rev 2024; 157:105530. [PMID: 38176634 DOI: 10.1016/j.neubiorev.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Circulating testosterone is easily aromatized to estradiol and reduced to dihydrotestosterone in target tissues and elsewhere in the body. Thus, the actions of testosterone can be mediated either by the estrogen receptors, the androgen receptor or by simultaneous action at both receptors. To determine the role of androgens acting at the androgen receptor, we need to eliminate actions at the estrogen receptors. Alternatively, actions at the androgen receptor itself can be eliminated. In the present review, I will analyze the specific role of androgen receptors in male and female sexual behavior as well as in aggression. Some comments about androgen receptors and social recognition are also made. It will be shown that there are important differences between species, even between strains within a species, concerning the actions of the androgen receptor on the behaviors mentioned. This fact makes generalizations from one species to another or from one strain to another very risky. The existence of important species differences is often ignored, leading to many misunderstandings and much confusion.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
4
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Wells KV, Krackeler ML, Jathal MK, Parikh M, Ghosh PM, Leach JK, Genetos DC. Prostate cancer and bone: clinical presentation and molecular mechanisms. Endocr Relat Cancer 2023; 30:e220360. [PMID: 37226936 PMCID: PMC10696925 DOI: 10.1530/erc-22-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Prostate cancer (PCa) is an increasingly prevalent health problem in the developed world. Effective treatment options exist for localized PCa, but metastatic PCa has fewer treatment options and shorter patient survival. PCa and bone health are strongly entwined, as PCa commonly metastasizes to the skeleton. Since androgen receptor signaling drives PCa growth, androgen-deprivation therapy whose sequelae reduce bone strength constitutes the foundation of advanced PCa treatment. The homeostatic process of bone remodeling - produced by concerted actions of bone-building osteoblasts, bone-resorbing osteoclasts, and regulatory osteocytes - may also be subverted by PCa to promote metastatic growth. Mechanisms driving skeletal development and homeostasis, such as regional hypoxia or matrix-embedded growth factors, may be subjugated by bone metastatic PCa. In this way, the biology that sustains bone is integrated into adaptive mechanisms for the growth and survival of PCa in bone. Skeletally metastatic PCa is difficult to investigate due to the entwined nature of bone biology and cancer biology. Herein, we survey PCa from origin, presentation, and clinical treatment to bone composition and structure and molecular mediators of PCa metastasis to bone. Our intent is to quickly yet effectively reduce barriers to team science across multiple disciplines that focuses on PCa and metastatic bone disease. We also introduce concepts of tissue engineering as a novel perspective to model, capture, and study complex cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Kristina V Wells
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Margaret L Krackeler
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Maitreyee K Jathal
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
- Veterans Affairs-Northern California Health System, Mather, California, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health System, Mather, California, USA
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
6
|
Zelleroth S, Nylander E, Kjellgren E, Grönbladh G, Hallberg M. Nandrolone decanoate and testosterone undecanoate differently affect stress hormones, neurotransmitter systems, and general activity in the male rat. Behav Brain Res 2022; 432:113971. [PMID: 35738337 DOI: 10.1016/j.bbr.2022.113971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Anabolic androgenic steroids (AAS) are frequently used to improve physical appearance and strength. AAS are known to affect muscle growth, but many AAS-users also experience psychiatric and behavioral changes after long-term use. The AAS-induced effects on the brain seem to depend on the type of steroid used, but the rationale behind the observed effect is still not clear. The present study investigated and compared the impact of nandrolone decanoate and testosterone undecanoate on body weight gain, levels of stress hormones, brain gene expression, and behavioral profiles in the male rat. The behavioral profile was determined using the multivariate concentric squared field test (MCSF-test). Blood plasma and brains were collected for further analysis using ELISA and qPCR. Nandrolone decanoate caused a reduction in body weight gain in comparison with both testosterone undecanoate and control. Rats receiving nandrolone decanoate also demonstrated decreased general activity in the MCSF. In addition, nandrolone decanoate reduced the plasma levels of ACTH in comparison with the control and increased the levels of corticosterone in comparison with testosterone undecanoate. The qPCR analysis revealed brain region-dependent changes in mRNA expression, where the hypothalamus was identified as the region most affected by the AAS. Alterations in neurotransmitter systems and stress hormones may contribute to the changes in behavior detected in the MCSF. In conclusion, both AAS affect the male rat, although, nandrolone decanoate has more pronounced impact on the physiological and the behavioral parameters measured.
Collapse
Affiliation(s)
- Sofia Zelleroth
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| | - Erik Nylander
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| | - Ellinor Kjellgren
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| | - GronbladhAlfhild Grönbladh
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| | - Mathias Hallberg
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| |
Collapse
|
7
|
Bertoni A, Schaller F, Tyzio R, Gaillard S, Santini F, Xolin M, Diabira D, Vaidyanathan R, Matarazzo V, Medina I, Hammock E, Zhang J, Chini B, Gaiarsa JL, Muscatelli F. Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism. Mol Psychiatry 2021; 26:7582-7595. [PMID: 34290367 PMCID: PMC8872977 DOI: 10.1038/s41380-021-01227-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Oxytocin is an important regulator of the social brain. In some animal models of autism, notably in Magel2tm1.1Mus-deficient mice, peripheral administration of oxytocin in infancy improves social behaviors until adulthood. However, neither the mechanisms responsible for social deficits nor the mechanisms by which such oxytocin administration has long-term effects are known. Here, we aimed to clarify these oxytocin-dependent mechanisms, focusing on social memory performance. Using in situ hybridization (RNAscope), we have established that Magel2 and oxytocin receptor are co-expressed in the dentate gyrus and CA2/CA3 hippocampal regions involved in the circuitry underlying social memory. Then, we have shown that Magel2tm1.1Mus-deficient mice, evaluated in a three-chamber test, present a deficit in social memory. Next, in hippocampus, we conducted neuroanatomical and functional studies using immunostaining, oxytocin-binding experiments, ex vivo electrophysiological recordings, calcium imaging and biochemical studies. We demonstrated: an increase of the GABAergic activity of CA3-pyramidal cells associated with an increase in the quantity of oxytocin receptors and of somatostatin interneurons in both DG and CA2/CA3 regions. We also revealed a delay in the GABAergic development sequence in Magel2tm1.1Mus-deficient pups, linked to phosphorylation modifications of KCC2. Above all, we demonstrated the positive effects of subcutaneous administration of oxytocin in the mutant neonates, restoring hippocampal alterations and social memory at adulthood. Although clinical trials are debated, this study highlights the mechanisms by which peripheral oxytocin administration in neonates impacts the brain and demonstrates the therapeutic value of oxytocin to treat infants with autism spectrum disorders.
Collapse
Affiliation(s)
- Alessandra Bertoni
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Fabienne Schaller
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Roman Tyzio
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | | | - Francesca Santini
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy. Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Marion Xolin
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Diabé Diabira
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | | | - Valery Matarazzo
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Igor Medina
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | | | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter, UK
| | - Bice Chini
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy. NeuroMI Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Jean-Luc Gaiarsa
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France
| | - Françoise Muscatelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université, Marseille, France.
| |
Collapse
|
8
|
Been LE, Sheppard PAS, Galea LAM, Glasper ER. Hormones and neuroplasticity: A lifetime of adaptive responses. Neurosci Biobehav Rev 2021; 132:679-690. [PMID: 34808191 DOI: 10.1016/j.neubiorev.2021.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Major life transitions often co-occur with significant fluctuations in hormones that modulate the central nervous system. These hormones enact neuroplastic mechanisms that prepare an organism to respond to novel environmental conditions and/or previously unencountered cognitive, emotional, and/or behavioral demands. In this review, we will explore several examples of how hormones mediate neuroplastic changes in order to produce adaptive responses, particularly during transitions in life stages. First, we will explore hormonal influences on social recognition in both males and females as they transition to sexual maturity. Next, we will probe the role of hormones in mediating the transitions to motherhood and fatherhood, respectively. Finally, we will survey the long-term impact of reproductive experience on neuroplasticity in females, including potential protective effects and risk factors associated with reproductive experience in mid-life and beyond. Ultimately, a more complete understanding of how hormones influence neuroplasticity throughout the lifespan, beyond development, is necessary for understanding how individuals respond to life changes in adaptive ways.
Collapse
Affiliation(s)
- Laura E Been
- Department of Psychology, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041, USA.
| | - Paul A S Sheppard
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 5B7, Canada.
| | - Liisa A M Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Erica R Glasper
- Department of Psychology, University of Maryland, College Park, MD, 20742 USA.
| |
Collapse
|
9
|
Duong P, Tenkorang MAA, Trieu J, McCuiston C, Rybalchenko N, Cunningham RL. Neuroprotective and neurotoxic outcomes of androgens and estrogens in an oxidative stress environment. Biol Sex Differ 2020; 11:12. [PMID: 32223745 PMCID: PMC7104511 DOI: 10.1186/s13293-020-0283-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The role of sex hormones on cellular function is unclear. Studies show androgens and estrogens are protective in the CNS, whereas other studies found no effects or damaging effects. Furthermore, sex differences have been observed in multiple oxidative stress-associated CNS disorders, such as Alzheimer's disease, depression, and Parkinson's disease. The goal of this study is to examine the relationship between sex hormones (i.e., androgens and estrogens) and oxidative stress on cell viability. METHODS N27 and PC12 neuronal and C6 glial phenotypic cell lines were used. N27 cells are female rat derived, whereas PC12 cells and C6 cells are male rat derived. These cells express estrogen receptors and the membrane-associated androgen receptor variant, AR45, but not the full-length androgen receptor. N27, PC12, and C6 cells were exposed to sex hormones either before or after an oxidative stressor to examine neuroprotective and neurotoxic properties, respectively. Estrogen receptor and androgen receptor inhibitors were used to determine the mechanisms mediating hormone-oxidative stress interactions on cell viability. Since the presence of AR45 in the human brain tissue was unknown, we examined the postmortem brain tissue from men and women for AR45 protein expression. RESULTS Neither androgens nor estrogens were protective against subsequent oxidative stress insults in glial cells. However, these hormones exhibited neuroprotective properties in neuronal N27 and PC12 cells via the estrogen receptor. Interestingly, a window of opportunity exists for sex hormone neuroprotection, wherein temporary hormone deprivation blocked neuroprotection by sex hormones. However, if sex hormones are applied following an oxidative stressor, they exacerbated oxidative stress-induced cell loss in neuronal and glial cells. CONCLUSIONS Sex hormone action on cell viability is dependent on the cellular environment. In healthy neuronal cells, sex hormones are protective against oxidative stress insults via the estrogen receptor, regardless of sex chromosome complement (XX, XY). However, in unhealthy (e.g., high oxidative stress) cells, sex hormones exacerbated oxidative stress-induced cell loss, regardless of cell type or sex chromosome complement. The non-genomic AR45 receptor, which is present in humans, mediated androgen's damaging effects, but it is unknown which receptor mediated estrogen's damaging effects. These differential effects of sex hormones that are dependent on the cellular environment, receptor profile, and cell type may mediate the observed sex differences in oxidative stress-associated CNS disorders.
Collapse
Affiliation(s)
- Phong Duong
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Mavis A A Tenkorang
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Jenny Trieu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Clayton McCuiston
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Nataliya Rybalchenko
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA. .,Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3400 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
10
|
Le Moëne O, Ågmo A. The neuroendocrinology of sexual attraction. Front Neuroendocrinol 2018; 51:46-67. [PMID: 29288076 DOI: 10.1016/j.yfrne.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 01/23/2023]
Abstract
Sexual attraction has two components: Emission of sexually attractive stimuli and responsiveness to these stimuli. In rodents, olfactory stimuli are necessary but not sufficient for attraction. We argue that body odors are far superior to odors from excreta (urine, feces) as sexual attractants. Body odors are produced by sebaceous glands all over the body surface and in specialized glands. In primates, visual stimuli, for example the sexual skin, are more important than olfactory. The role of gonadal hormones for the production of and responsiveness to odorants is well established. Both the androgen and the estrogen receptor α are important in male as well as in female rodents. Also in primates, gonadal hormones are necessary for the responsiveness to sexual attractants. In males, the androgen receptor is sufficient for sustaining responsiveness. In female non-human primates, estrogens are needed, whereas androgens seem to contribute to responsiveness in women.
Collapse
Affiliation(s)
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
11
|
Berkel S, Eltokhi A, Fröhlich H, Porras-Gonzalez D, Rafiullah R, Sprengel R, Rappold GA. Sex Hormones Regulate SHANK Expression. Front Mol Neurosci 2018; 11:337. [PMID: 30319350 PMCID: PMC6167484 DOI: 10.3389/fnmol.2018.00337] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/28/2018] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorders (ASD) have a higher prevalence in male individuals compared to females, with a ratio of affected boys compared to girls of 4:1 for ASD and 11:1 for Asperger syndrome. Mutations in the SHANK genes (comprising SHANK1, SHANK2 and SHANK3) coding for postsynaptic scaffolding proteins have been tightly associated with ASD. As early brain development is strongly influenced by sex hormones, we investigated the effect of dihydrotestosterone (DHT) and 17β-estradiol on SHANK expression in a human neuroblastoma cell model. Both sex hormones had a significant impact on the expression of all three SHANK genes, which could be effectively blocked by androgen and estrogen receptor antagonists. In neuron-specific androgen receptor knock-out mice (ArNesCre), we found a nominal significant reduction of all Shank genes at postnatal day 7.5 in the cortex. In the developing cortex of wild-type (WT) CD1 mice, a sex-differential protein expression was identified for all Shanks at embryonic day 17.5 and postnatal day 7.5 with significantly higher protein levels in male compared to female mice. Together, we could show that SHANK expression is influenced by sex hormones leading to a sex-differential expression, thus providing novel insights into the sex bias in ASD.
Collapse
Affiliation(s)
- Simone Berkel
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany.,Research Group of the Max Planck Institute for Medical Research at the Institute of Anatomy and Cell Biology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Henning Fröhlich
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Diana Porras-Gonzalez
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Rafiullah Rafiullah
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Rolf Sprengel
- Research Group of the Max Planck Institute for Medical Research at the Institute of Anatomy and Cell Biology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
12
|
Mhaouty-Kodja S. Role of the androgen receptor in the central nervous system. Mol Cell Endocrinol 2018; 465:103-112. [PMID: 28826929 DOI: 10.1016/j.mce.2017.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022]
Abstract
The involvement of gonadal androgens in functions of the central nervous system was suggested for the first time about half a century ago. Since then, the number of functions attributed to androgens has steadily increased, ranging from regulation of the hypothalamic-pituitary-gonadal axis and reproductive behaviors to modulation of cognition, anxiety and other non-reproductive functions. This review focuses on the implication of the neural androgen receptor in these androgen-sensitive functions and behaviors.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 7 Quai St Bernard, 75005 Paris, France.
| |
Collapse
|
13
|
Ujjainwala AL, Courtney CD, Rhoads SG, Rhodes JS, Christian CA. Genetic loss of diazepam binding inhibitor in mice impairs social interest. GENES BRAIN AND BEHAVIOR 2017; 17:e12442. [PMID: 29193847 DOI: 10.1111/gbb.12442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 01/21/2023]
Abstract
Neuropsychiatric disorders in which reduced social interest is a common symptom, such as autism, depression, and anxiety, are frequently associated with genetic mutations affecting γ-aminobutyric acid (GABA)ergic transmission. Benzodiazepine treatment, acting via GABA type-A receptors, improves social interaction in male mouse models with autism-like features. The protein diazepam binding inhibitor (DBI) can act as an endogenous benzodiazepine, but a role for DBI in social behavior has not been described. Here, we investigated the role of DBI in the social interest and recognition behavior of mice. The responses of DBI wild-type and knockout male and female mice to ovariectomized female wild-type mice (a neutral social stimulus) were evaluated in a habituation/dishabituation task. Both male and female knockout mice exhibited reduced social interest, and DBI knockout mice lacked the sex difference in social interest levels observed in wild-type mice, in which males showed higher social interest levels than females. The ability to discriminate between familiar and novel stimulus mice (social recognition) was not impaired in DBI-deficient mice of either sex. DBI knockouts could learn a rotarod motor task, and could discriminate between social and nonsocial odors. Both sexes of DBI knockout mice showed increased repetitive grooming behavior, but not in a manner that would account for the decrease in social investigation time. Genetic loss of DBI did not alter seminal vesicle weight, indicating that the social interest phenotype of males lacking DBI is not due to reduced circulating testosterone. Together, these studies show a novel role of DBI in driving social interest and motivation.
Collapse
Affiliation(s)
- A L Ujjainwala
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - C D Courtney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - S G Rhoads
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - J S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - C A Christian
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
14
|
Direct Involvement of Androgen Receptor in Oxytocin Gene Expression: Possible Relevance for Mood Disorders. Neuropsychopharmacology 2017; 42:2064-2071. [PMID: 28447621 PMCID: PMC5561345 DOI: 10.1038/npp.2017.76] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 11/08/2022]
Abstract
Oxytocin (OXT), synthesized in the hypothalamic paraventricular nucleus (PVN) and then released into different brain areas, may play a crucial role in various behaviors and neuropsychiatric disorders, including depression. Testosterone has been proposed by clinical studies to have the opposite effect of oxytocin in these disorders. We began by studying, in the postmortem hypothalamus of fifteen patients with mood disorders and fifteen matched controls, the expression of OXT in the PVN by means of immunocytochemistry (ICC) and the co-localization of OXT and androgen receptor (AR) by means of double labeling ICC. Subsequently, the regulatory effect of AR on OXT gene expression was studied in vitro. We found a higher expression of PVN OXT in the mood disorder patients than in the control subjects, and observed a clear co-localization of AR in OXT-expressing neurons, both in the cytoplasm and in the nucleus. In addition, a significant decrease in OXT-mRNA levels was observed after pre-incubation of the SK-N-SH cells with testosterone. A further potential androgen-responsive element in the human OXT gene promotor was revealed by electrophoretic mobility shift assays and co-transfections in neuroblastoma cells. Finally, in vitro studies demonstrated that AR mediated the down-regulation of OXT gene expression. These results suggest that the fact that OXT and testosterone appear to have opposite effects in neuropsychiatric disorders might be based upon a direct inhibition of AR on OXT transcription, which may provide a novel target for therapeutic strategies in depression.
Collapse
|
15
|
Zettergren A, Karlsson S, Studer E, Sarvimäki A, Kettunen P, Thorsell A, Sihlbom C, Westberg L. Proteomic analyses of limbic regions in neonatal male, female and androgen receptor knockout mice. BMC Neurosci 2017; 18:9. [PMID: 28056817 PMCID: PMC5217640 DOI: 10.1186/s12868-016-0332-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background It is well-established that organizational effects of sex steroids during early development are fundamental for sex-typical displays of, for example, mating and aggressive behaviors in rodents and other species. Male and female brains are known to differ with respect to neuronal morphology in particular regions of the brain, including the number and size of neurons, and the density and length of dendrites in nuclei of hypothalamus and amygdala. The aim of the present study was to use global proteomics to identify proteins differentially expressed in hypothalamus/amygdala during early development (postnatal day 8) of male, female and conditional androgen receptor knockout (ARNesDel) male mice, lacking androgen receptors specifically in the brain. Furthermore, verification of selected sexually dimorphic proteins was performed using targeted proteomics. Results Our proteomic approach, iTRAQ, allowed us to investigate expression differences in the 2998 most abundantly expressed proteins in our dissected tissues. Approximately 170 proteins differed between the sexes, and 38 proteins between ARNesDel and control males (p < 0.05). In line with previous explorative studies of sexually dimorphic gene expression we mainly detected subtle protein expression differences (fold changes <1.3). The protein MARCKS (myristoylated alanine rich C kinase substrate), having the largest fold change of the proteins selected from the iTRAQ analyses and of known importance for synaptic transmission and dendritic branching, was confirmed by targeted proteomics as differentially expressed between the sexes. Conclusions Overall, our results provide solid evidence that a large number of proteins show sex differences in their brain expression and could potentially be involved in brain sexual differentiation. Furthermore, our finding of a sexually dimorphic expression of MARCKS in the brain during development warrants further investigation on the involvement in sexual differentiation of this protein. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0332-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sara Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Anna Sarvimäki
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Annika Thorsell
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carina Sihlbom
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.
| |
Collapse
|
16
|
Abstract
The neuropeptide oxytocin (OT) has emerged as a potent modulator of diverse aspects of interpersonal relationships. OT appears to work in close interaction with several other neurotransmitter networks, including the dopaminergic reward circuit, and to be dependent on sex-specific hormonal influences. In this chapter, we focus on four main domains of OT and interpersonal relationships, including (1) the protective effect of OT on an individual's ability to withstand stress (i.e., stress buffering), (2) the effect of OT on emotion recognition and empathy, (3) OT's ability to enhance social synchrony and cooperation among individuals, and (4) the effect of OT on an individual's perception of social touch. We then illustrate the connection between OT and loneliness while grieving the loss of a loved one. We finish by discussing the clinical potential of OT, focusing on its potential role as an adjunct to psychotherapy, its enhancement through sex-specific hormonal influences, and the difficulties that present themselves when considering OT as a therapy. Overall, we argue that OT continues to hold strong therapeutic promise, but that it is strongly dependent on internal and external influences, for instance the patient's personal past experiences and interaction with the therapist, in order to provide the best possible therapy.
Collapse
|
17
|
Sex-dependent changes in neuronal morphology and psychosocial behaviors after pediatric brain injury. Behav Brain Res 2016; 319:48-62. [PMID: 27829127 DOI: 10.1016/j.bbr.2016.10.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Chronic social behavior problems after pediatric traumatic brain injury (TBI) significantly contribute to poor quality of life for survivors. Using a well-characterized mouse model of early childhood TBI, we have previously demonstrated that young brain-injured mice develop social deficits by adulthood. As biological sex may influence both normal and aberrant social development, we here evaluated potential sex differences in post-TBI psychosocial deficits by comparing the behavior of male and female mice at adulthood (8 weeks post-injury). Secondly, we hypothesized that pediatric TBI would influence neuronal morphology identified by Golgi-Cox staining in the hippocampus and prefrontal cortex, regions involved in social cognition and behavior, before the onset of social problems (3 weeks post-injury). Morphological analysis of pyramidal neurons in the ipsilateral prefrontal cortex and granule cells of the hippocampal dentate gyrus revealed a reduction in dendritic complexity after pediatric TBI. This was most apparent in TBI males, whereas neurons from females were less affected. At adulthood, consistent with previous studies, TBI males showed deficits in sociability and social recognition. TBI females also showed a reduction in sociability, but intact social recognition and increased sociosexual avoidance. Together, these findings indicate that sex is a determinant of regional neuroplasticity and social outcomes after pediatric TBI. Reduced neuronal complexity in the prefrontal cortex and hippocampus, several weeks after injury in male mice, appears to precede the subsequent emergence of social deficits. Sex-specific alterations in the social brain network are thus implicated as an underlying mechanism of social dysfunction after pediatric TBI.
Collapse
|