1
|
Ryakiotakis E, Fousfouka D, Stamatakis A. Maternal neglect alters reward-anticipatory behavior, social status stability, and reward circuit activation in adult male rats. Front Neurosci 2023; 17:1201345. [PMID: 37521688 PMCID: PMC10375725 DOI: 10.3389/fnins.2023.1201345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Adverse early life experiences affect neuronal growth and maturation of reward circuits that modify behavior under reward predicting conditions. Previous studies demonstrate that rats undergoing denial of expected reward in the form of maternal contact (DER-animal model of maternal neglect) during early post-natal life developed anhedonia, aggressive play-fight behaviors and aberrant prefrontal cortex structure and neurochemistry. Although many studies revealed social deficiency following early-life stress most reports focus on individual animal tasks. Thus, attention needs to be given on the social effects during group tasks in animals afflicted by early life adversity. Methods To investigate the potential impact of the DER experience on the manifestation of behavioral responses induced by natural rewards, we evaluated: 1) naïve adult male sexual preference and performance, and 2) anticipatory behavior during a group 2-phase food anticipation learning task composed of a context-dependent and a cue-dependent learning period. Results DER rats efficiently spent time in the vicinity of and initiated sexual intercourse with receptive females suggesting an intact sexual reward motivation and consummation. Interestingly, during the context-dependent phase of food anticipation training DER rats displayed a modified exploratory activity and lower overall reward-context association. Moreover, during the cue-dependent phase DER rats displayed a mild deficit in context-reward association while increased cue-dependent locomotion. Additionally, DER rats displayed unstable food access priority following food presentation. These abnormal behaviours were accompanied by overactivation of the ventral prefrontal cortex and nucleus accumbens, as assessed by pCREB levels. Conclusions/discussion Collectively, these data show that the neonatal DER experience resulted in adulthood in altered activation of the reward circuitry, interfered with the normal formation of context-reward associations, and disrupted normal reward access hierarchy formation. These findings provide additional evidence to the deleterious effects of early life adversity on reward system, social hierarchy formation, and brain function.
Collapse
Affiliation(s)
- Ermis Ryakiotakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Fousfouka
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- MSc Program in Molecular Biomedicine, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Stamatakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Tan S, Wang H, Xu X, Zhao L, Zhang J, Dong J, Yao B, Wang H, Hao Y, Zhou H, Gao Y, Peng R. Acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory abilities and CREB-related pathways. Sci Rep 2021; 11:12348. [PMID: 34117282 PMCID: PMC8196025 DOI: 10.1038/s41598-021-91622-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory and cAMP response element binding (CREB)-related pathways. A total of 120 male Wistar rats were divided into four groups: a control group (C); 2.856 GHz microwave exposure group (S group); 1.5 GHz microwave exposure group (L group); and 2.856 and 1.5 GHz cumulative exposure group (SL group). Decreases in spatial memory abilities, changes in EEG, structural injuries, and the downregulation of phosphorylated-Ak strain transforming (p-AKT), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), phosphorylated extracellular signal regulated kinase (p-ERK) and p-CREB was observed 6 h after microwave exposure. Significant differences in the expression of p-CaMKII were found between the S and L groups. The power amplitudes of the EEG waves (θ, δ), levels of structural injuries and the expression of p-AKT, p-CaMK II, p-CREB, and p-ERK1/2 were significantly different in the S and L groups compared to the SL group. Interaction effects between the 2.856 and 1.5 GHz microwaves were found in the EEG and p-CREB changes. Our findings indicated that 2.856 GHz and 1.5 GHz microwave exposure induced a decline in spatial memory, which might be related to p-AKT, p-CaMK II, p-CREB and p-ERK1/2.
Collapse
Affiliation(s)
- Shengzhi Tan
- PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ji Dong
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Haoyu Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yanhui Hao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Hongmei Zhou
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Sun W, Wu Y, Tang D, Li X, An L. Melamine disrupts spatial reversal learning and learning strategy via inhibiting hippocampal BDNF-mediated neural activity. PLoS One 2021; 16:e0245326. [PMID: 33428671 PMCID: PMC7799824 DOI: 10.1371/journal.pone.0245326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Although several studies showed adverse neurotoxic effects of melamine on hippocampus (HPC)-dependent learning and reversal learning, the evidence for this mechanism is still unknown. We recently demonstrated that intra-hippocampal melamine injection affected the induction of long-term depression, which is associated with novelty acquisition and memory consolidation. Here, we infused melamine into the HPC of rats, and employed behavioral tests, immunoblotting, immunocytochemistry and electrophysiological methods to sought evidence for its effects on cognitive flexibility. Rats with intra-hippocampal infusion of melamine displayed dose-dependent increase in trials to the criterion in reversal learning, with no locomotion or motivation defect. Compared with controls, melamine-treated rats avoided HPC-dependent place strategy. Meanwhile, the learning-induced BDNF level in the HPC neurons was significantly reduced. Importantly, bilateral intra-hippocampal BDNF infusion could effectively mitigate the suppressive effects of melamine on neural correlate with reversal performance, and rescue the strategy bias and reversal learning deficits. Our findings provide first evidence for the effect of melamine on cognitive flexibility and suggest that the reversal learning deficit is due to the inability to use place strategy. Furthermore, the suppressive effects of melamine on BDNF-mediated neural activity could be the mechanism, thus advancing the understanding of compulsive behavior in melamine-induced and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
4-Hydroxynonenal Immunoreactivity Is Increased in the Frontal Cortex of 5XFAD Transgenic Mice. Biomedicines 2020; 8:biomedicines8090326. [PMID: 32899155 PMCID: PMC7554765 DOI: 10.3390/biomedicines8090326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress was implicated in the functional impairment of the frontal cortex observed in early Alzheimer’s disease (AD). To elucidate this role in an animal AD model, we assessed cognitive function of 4-month-old five familial AD (5XFAD) transgenic (Tg) mice using a learning strategy-switching task requiring recruitment of the frontal cortex and measuring levels of 4-hydroxy-2-trans-nonenal (4-HNE), a marker of oxidative stress, in their frontal cortex. Mice were sequentially trained in cued/response and place/spatial versions of the water maze task for four days each. 5XFAD and non-Tg mice exhibited equal performance in cued/response training. However, 5XFAD mice used spatial search strategy less than non-Tg mice in the spatial/place training. Immunoblot and immunofluorescence staining showed that 4-HNE levels increased in the frontal cortex, but not in the hippocampus and striatum, of 5XFAD mice compared to those in non-Tg mice. We report early cognitive deficits related to the frontal cortex and the frontal cortex’s oxidative damage in 4-month-old 5XFAD mice. These results suggest that 4-month-old 5XFAD mice be a useful animal model for the early diagnosis and management of AD.
Collapse
|
5
|
Kim DH, Jang YS, Jeon WK, Han JS. Assessment of Cognitive Phenotyping in Inbred, Genetically Modified Mice, and Transgenic Mouse Models of Alzheimer's Disease. Exp Neurobiol 2019; 28:146-157. [PMID: 31138986 PMCID: PMC6526110 DOI: 10.5607/en.2019.28.2.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Genetically modified mouse models are being used predominantly to understand brain functions and diseases. Well-designed and controlled behavioral analyses of genetically modified mice have successfully led to the identification of gene functions, understanding of brain diseases, and development of treatments. Recently, complex and higher cognitive functions have been examined in mice with genetic mutations. Therefore, research strategies for cognitive phenotyping should be sophisticated and evolve to convey the exact meaning of the findings and provide robust translational tools for testing hypotheses and developing treatments. This review addresses issues of experimental design and discusses studies that have examined cognitive function using mouse strain differences, genetically modified mice, and transgenic mice for Alzheimer's disease.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yoon-Sun Jang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
6
|
Cho WH, Park JC, Jeon WK, Cho J, Han JS. Superior Place Learning of C57BL/6 vs. DBA/2 Mice Following Prior Cued Learning in the Water Maze Depends on Prefrontal Cortical Subregions. Front Behav Neurosci 2019; 13:11. [PMID: 30760989 PMCID: PMC6361835 DOI: 10.3389/fnbeh.2019.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023] Open
Abstract
The participation of the prefrontal cortex (PFC), hippocampus, and dorsal striatum in switching the learning task from cued to place learning were examined in C57BL/6 and DBA/2 mice, by assessing changed levels of phosphorylated CREB (pCREB). Mice of both strains first received cued training in a water maze for 4 days (4 trials per day), and were then assigned to one of four groups, one with no place training, and three with different durations of place training (2, 4, or 8 days). Both strains showed equal performance in cued training. After the switch to place training, C57BL/6 mice with 2 or 4 days of training performed significantly better than DBA/2 mice, but their superiority disappeared during the second half of an 8 days-place training period. The pCREB levels of these mice were measured 30 min after place training and compared with those of mice that received only cued training. Changes in pCREB levels of C57BL/6 mice were greater in the hippocampal CA3, hippocampal dentate gyrus, orbitofrontal and medial PFC than those of DBA/2 mice, when mice of both received the switched place training for 2 days. We further investigated the roles of orbitofrontal and medial PFC among these brain regions showing strain differences, by destroying each region using selective neurotoxins. C57BL/6 mice with orbitofrontal lesions were slower to acquire the place learning and continued to use the cued search acquired during the cued training phase. These findings indicate that mouse orbitofrontal cortex (OFC) pCREB is associated with behavioral flexibility such as the ability to switch a learning task.
Collapse
Affiliation(s)
- Woo-Hyun Cho
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jung-Cheol Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jeiwon Cho
- Department of Medical Science, College of Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea.,Institute for Bio-Medical Convergence, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, South Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
7
|
Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains. PLoS One 2017; 12:e0188537. [PMID: 29166674 PMCID: PMC5699833 DOI: 10.1371/journal.pone.0188537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/08/2017] [Indexed: 12/28/2022] Open
Abstract
Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.
Collapse
|