1
|
Ramadan B, Van Waes V. Evaluating the efficacy of transcranial direct current stimulation (tDCS) in managing neuropathic pain-induced emotional consequences: Insights from animal models. Neurophysiol Clin 2025; 55:103055. [PMID: 39884008 DOI: 10.1016/j.neucli.2025.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Neuropathic pain is a global health concern due to its severity and its detrimental impact on patients' quality of life. It is primarily characterized by sensory alterations, most commonly hyperalgesia and allodynia. As the disease progresses, patients with neuropathic pain develop co-occurring emotional disorders, such as anxiety and depression, which further complicate therapeutic management. While pharmacotherapy remains the first-line treatment, limitations in its efficacy and the prevalence of side effects often leave patients with insufficient pain relief. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, has recently emerged as a promising alternative for chronic pain management. This review provides an overview of preclinical studies examining the effects of tDCS in rodent models of neuropathic pain. It specifically highlights the potential of tDCS to modulate the emotional-affective component of pain, with a focus on identifying optimal cortical targets for stimulation to enhance the translational application of tDCS in managing pain-related emotional disorders.
Collapse
Affiliation(s)
- Bahrie Ramadan
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| | - Vincent Van Waes
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| |
Collapse
|
2
|
Tan M, Feng Z, Chen H, Min L, Wen H, Liu H, Hou J. Transcranial direct current stimulation regulates phenotypic transformation of microglia to relieve neuropathic pain induced by spinal cord injury. Front Behav Neurosci 2023; 17:1147693. [PMID: 37081929 PMCID: PMC10110883 DOI: 10.3389/fnbeh.2023.1147693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
ObjectiveNeuropathic pain is a common complication after spinal cord injury (SCI). Transcranial direct current stimulation (tDCS) has been confirmed to be effective in relieving neuropathic pain in patients with SCI. The aim of this study is to investigate the effect of tDCS on neuropathic pain induced by SCI and its underlying mechanism.Materials and methodsThe SCI model was induced by a clip-compression injury and tDCS stimulation was performed for two courses (5 days/each). The motor function was evaluated by Basso-Beattie-Bresnahan (BBB) score, and the thermal withdrawal threshold was evaluated by the thermal radiation method. The effects of tDCS on the cerebral cortex, thalamus, midbrain, and medulla were detected by the enzyme-linked immunosorbent assay (ELISA) and immunofluorescence.ResultsThe results showed that SCI reduced the thermal withdrawal threshold and increased the concentration of inflammatory cytokines in the cortex, thalamus, midbrain, and medulla, including the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). In addition, the activation of microglia and the proportion of M1 phenotypic polarization increased significantly in the ventral posterolateral (VPL), ventral tegmental (VTA), and periaqueductal gray (PAG) regions after SCI. After tDCS treatment, the thermal withdrawal threshold and motor function of SCI rats were significantly improved compared to the vehicle group. Meanwhile, tDCS effectively reduced the concentration of pro-inflammatory cytokines in the cortex, thalamus, midbrain, and medulla and increased the concentration of anti-inflammatory cytokines interleukin-10 (IL-10) in the thalamus. In addition, tDCS reduced the proportion of the M1 phenotype of microglia in VPL, VTA, and PAG regions and increase the proportion of the M2 phenotype.ConclusionThe results suggest that tDCS can effectively relieve SCI-induced neuropathic pain. Its mechanism may be related to regulating the inflammatory and anti-inflammatory cytokines in corresponding brain regions via promoting the phenotypic transformation of microglia.
Collapse
Affiliation(s)
- Mingliang Tan
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hui Chen
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lingxia Min
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Hongliang Liu
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
- *Correspondence: Hongliang Liu,
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
- Jingming Hou,
| |
Collapse
|
3
|
Wandrey JD, Kastelik J, Fritzsche T, Denke C, Schäfer M, Tafelski S. Supplementing transcranial direct current stimulation to local infiltration series for refractory neuropathic craniocephalic pain: A randomized controlled pilot trial. Front Neurol 2023; 14:1069434. [PMID: 36937523 PMCID: PMC10014889 DOI: 10.3389/fneur.2023.1069434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/07/2023] [Indexed: 03/05/2023] Open
Abstract
Background Some patients with neuralgia of cranial nerves with otherwise therapy-refractory pain respond to invasive therapy with local anesthetics. Unfortunately, pain regularly relapses despite multimodal pain management. Transcranial direct current stimulation (tDCS) may prolong pain response due to neuro-modulatory effects. Methods This controlled clinical pilot trial randomized patients to receive anodal, cathodal or sham-tDCS stimulation prior to local anesthetic infiltration. Pain attenuation, quality-of-life and side effects were assessed and compared with historic controls to estimate effects of tDCS stimulation setting. Results Altogether, 17 patients were randomized into three groups with different stimulation protocols. Relative reduction of pain intensity in per protocol treated patients were median 73%, 50% and 69% in anodal, cathodal and sham group, respectively (p = 0.726). Compared with a historic control group, a lower rate of responders with 50% reduction of pain intensity indicates probable placebo effects (OR 3.41 stimulation vs. non-stimulation setting, NNT 3.63). 76.9% (n = 10) of tDCS patients reported mild side-effects. Of all initially included 17 patients, 23.5% (n = 4) withdrew their study participation with highest proportion in the cathodal group (n = 3). A sample size calculation for a confirmatory trial revealed 120 patients using conservative estimations. Discussion This pilot trial does not support series of anodal tDCS as neuro-modulatory treatment to enhance pain alleviation of local anesthetic infiltration series. Notably, results may indicate placebo effects of tDCS settings. Feasibility of studies in this population was limited due to relevant drop-out rates. Anodal tDCS warrants further confirmation as neuro-modulatory pain treatment option.
Collapse
Affiliation(s)
- Jan D. Wandrey
- Department of Anesthesiology and Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Shen QR, Hu MT, Feng W, Li KP, Wang W. Narrative Review of Noninvasive Brain Stimulation in Stroke Rehabilitation. Med Sci Monit 2022; 28:e938298. [PMID: 36457205 PMCID: PMC9724451 DOI: 10.12659/msm.938298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 09/02/2023] Open
Abstract
Stroke is a disease with a high incidence and disability rate, resulting in changes in neural network and corticoid-subcortical excitability and various functional disabilities. The aim of the present study was to discuss the current status of research and limitations and potential direction in the application of noninvasive brain stimulation (NIBS) on post-stroke patients. This literature review focused on clinical studies and reviews. Literature retrieval was conducted in PubMed, Cochrane, Scopus, and CNKI, using the following keywords: Repeated transcranial magnetic stimulation, Transcranial direct current stimulation, Transcranial alternating current stimulation, Transcranial alternating current stimulation, Transcranial focused ultrasound, Noninvasive vagus nerve stimulation, Stroke, and Rehabilitation. We selected 200 relevant publications from 1985 to 2022. An overview of recent research on the use of NIBS on post-stroke patients, including its mechanism, therapeutic parameters, effects, and safety, is presented. It was found that NIBS has positive therapeutic effects on dysfunctions of motor, sensory, cognitive, speech, swallowing, and depression after stroke, but standardized stimulus programs are still lacking. The literature suggests that rTMS and tDCS are more beneficial to post-stroke patients, while tFUS and tVNS are currently less studied for post-stroke rehabilitation, but are also potential interventions.
Collapse
Affiliation(s)
- Qian-ru Shen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Meng-ting Hu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Wei Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Wu Wang
- Department of Rehabilitation Therapy, The Second Rehabilitation Hospital of Shanghai, Shanghai, PR China
| |
Collapse
|
5
|
Yang QH, Zhang YH, Du SH, Wang YC, Fang Y, Wang XQ. Non-invasive Brain Stimulation for Central Neuropathic Pain. Front Mol Neurosci 2022; 15:879909. [PMID: 35663263 PMCID: PMC9162797 DOI: 10.3389/fnmol.2022.879909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The research and clinical application of the noninvasive brain stimulation (NIBS) technique in the treatment of neuropathic pain (NP) are increasing. In this review article, we outline the effectiveness and limitations of the NIBS approach in treating common central neuropathic pain (CNP). This article summarizes the research progress of NIBS in the treatment of different CNPs and describes the effects and mechanisms of these methods on different CNPs. Repetitive transcranial magnetic stimulation (rTMS) analgesic research has been relatively mature and applied to a variety of CNP treatments. But the optimal stimulation targets, stimulation intensity, and stimulation time of transcranial direct current stimulation (tDCS) for each type of CNP are still difficult to identify. The analgesic mechanism of rTMS is similar to that of tDCS, both of which change cortical excitability and synaptic plasticity, regulate the release of related neurotransmitters and affect the structural and functional connections of brain regions associated with pain processing and regulation. Some deficiencies are found in current NIBS relevant studies, such as small sample size, difficulty to avoid placebo effect, and insufficient research on analgesia mechanism. Future research should gradually carry out large-scale, multicenter studies to test the stability and reliability of the analgesic effects of NIBS.
Collapse
Affiliation(s)
- Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yong-Hui Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Chen Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu Fang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Yu Fang,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
6
|
Li X, Ye Y, Wang L, Zhou W, Chu X, Li T. Botulinum toxin type a combined with transcranial direct current stimulation reverses the chronic pain induced by osteoarthritis in rats. Toxicon 2022; 212:42-48. [DOI: 10.1016/j.toxicon.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
|
7
|
Pedron S, Dumontoy S, Dimauro J, Haffen E, Andrieu P, Van Waes V. Open-tES: An open-source stimulator for transcranial electrical stimulation designed for rodent research. PLoS One 2020; 15:e0236061. [PMID: 32663223 PMCID: PMC7360043 DOI: 10.1371/journal.pone.0236061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulatory techniques, including transcranial direct current stimulation (tDCS), have been shown to modulate neuronal function and are used both in cognitive neuroscience and to treat neuropsychiatric conditions. In this context, animal models provide a powerful tool to identify the neurobiological mechanisms of action of tDCS. However, finding a current generator that is easily usable and which allows a wide range of stimulation parameters can be difficult and/or expensive. Here, we introduce the Open-tES device, a project under a Creative Commons License (CC BY, SA 4.0) shared on the collaborative platform Git-Hub. This current generator allows tDCS (and other kinds of stimulations) to be realized, is suitable for rodents, is easy to use, and is low-cost. Characterization has been performed to measure the precision and accuracy of the current delivered. We also aimed to compare its effects with a commercial stimulator used in clinical trials (DC-Stimulator Plus, NeuroConn, Germany). To achieve this, a behavioral study was conducted to evaluate its efficacy for decreasing depression related-behavior in mice. The stimulator precision and accuracy were better than 250 nA and 25 nA, respectively. The behavioral evaluation performed in mice in the present study did not reveal any significant differences between the commercial stimulator used in clinical trials and the Open-tES device. Accuracy and precision of the stimulator ensure high repeatability of the stimulations. This current generator constitutes a reliable and inexpensive tool that is useful for preclinical studies in the field of non-invasive electrical brain stimulation.
Collapse
Affiliation(s)
- Solène Pedron
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Stéphanie Dumontoy
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Julien Dimauro
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Patrice Andrieu
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Vincent Van Waes
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
8
|
Lopes BC, Medeiros LF, Silva de Souza V, Cioato SG, Medeiros HR, Regner GG, Lino de Oliveira C, Fregni F, Caumo W, Torres IL. Transcranial direct current stimulation combined with exercise modulates the inflammatory profile and hyperalgesic response in rats subjected to a neuropathic pain model: Long-term effects. Brain Stimul 2020; 13:774-782. [DOI: 10.1016/j.brs.2020.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
|
9
|
Anvari SS, Nasehi M, Zarrindast MR. Effects of Acute and Subchronic Anodal Transcranial Direct Current Stimulation (tDCS) on Morphine-Induced Responses in Hotplate Apparatus. Galen Med J 2019; 8:e1157. [PMID: 34466466 PMCID: PMC8343709 DOI: 10.31661/gmj.v8i0.1157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/14/2018] [Accepted: 11/10/2018] [Indexed: 11/28/2022] Open
Abstract
Background: The endogenous opioid system plays a basic role in pain suppression. The opiate analgesia is the most powerful and useful technique for reducing severe pain in many medical conditions. Transcranial direct current stimulation (tDCS) is a neuromodulator technique by which the cerebral cortex is stimulated with a weak and constant electrical current by the painless and non-invasive method. Materials and Methods: In this experimental study, we investigated the effect of tDCS on morphine (1.25, 2.5 and 5 mg/kg)-induced pain responses; as we applied left prefrontal anodal stimulation with 0.2 mA intensity and 20 minutes. Results: our results revealed that the acute (One-time electrical stimulation 24 hours after the last administration of morphine three days) and subchronic (three times electrical stimulation; one session/day before each administration of morphine three days) left prefrontal anodal tDCS does not alter pain perception induced by different dose of morphine significantly. Conclusion: Finally, our data indicated that there is no potentiated effect between acute tDCS or subchronic tDCS and morphine administration with tested parameters significantly.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Correspondence to: Mohammad Nasehi, Cognitive and Neuroscience Research Center, CNRC, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Telephone Number: +9821-99881118-20 Email Address:
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Sánchez-León CA, Ammann C, Medina JF, Márquez-Ruiz J. Using animal models to improve the design and application of transcranial electrical stimulation in humans. Curr Behav Neurosci Rep 2018; 5:125-135. [PMID: 30013890 DOI: 10.1007/s40473-018-0149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose of Review Transcranial electrical stimulation (tES) is a non-invasive stimulation technique used for modulating brain function in humans. To help tES reach its full therapeutic potential, it is necessary to address a number of critical gaps in our knowledge. Here, we review studies that have taken advantage of animal models to provide invaluable insight about the basic science behind tES. Recent Findings Animal studies are playing a key role in elucidating the mechanisms implicated in tES, defining safety limits, validating computational models, inspiring new stimulation protocols, enhancing brain function and exploring new therapeutic applications. Summary Animal models provide a wealth of information that can facilitate the successful utilization of tES for clinical interventions in human subjects. To this end, tES experiments in animals should be carefully designed to maximize opportunities for applying discoveries to the treatment of human disease.
Collapse
Affiliation(s)
| | - Claudia Ammann
- CINAC, University Hospital HM Puerta del Sur, CEU - San Pablo University, 28938-Móstoles, Madrid, Spain
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Javier Márquez-Ruiz
- Division of Neurosciences, Pablo de Olavide University, 41013-Seville, Spain
| |
Collapse
|