1
|
Li C, Ficco L, Trapp S, Rostalski SM, Korn L, Kovács G. The effect of context congruency on fMRI repetition suppression for objects. Neuropsychologia 2023; 188:108603. [PMID: 37270029 DOI: 10.1016/j.neuropsychologia.2023.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
The recognition of objects is strongly facilitated when they are presented in the context of other objects (Biederman, 1972). Such contexts facilitate perception and induce expectations of context-congruent objects (Trapp and Bar, 2015). The neural mechanisms underlying these facilitatory effects of context on object processing, however, are not yet fully understood. In the present study, we investigate how context-induced expectations affect subsequent object processing. We used functional magnetic resonance imaging and measured repetition suppression as a proxy for prediction error processing. Participants viewed pairs of alternating or repeated object images which were preceded by context-congruent, context-incongruent or neutral cues. We found a stronger repetition suppression in congruent as compared to incongruent or neutral cues in the object sensitive lateral occipital cortex. Interestingly, this stronger effect was driven by enhanced responses to alternating stimulus pairs in the congruent contexts, rather than by suppressed responses to repeated stimulus pairs, which emphasizes the contribution of surprise-related response enhancement for the context modulation on RS when expectations are violated. In addition, in the congruent condition, we discovered significant functional connectivity between object-responsive and frontal cortical regions, as well as between object-responsive regions and the fusiform gyrus. Our findings indicate that prediction errors, reflected in enhanced brain responses to violated contextual expectations, underlie the facilitating effect of context during object perception.
Collapse
Affiliation(s)
- Chenglin Li
- School of Psychology, Zhejiang Normal University, China; Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich-Schiller-Universität Jena, Germany
| | - Linda Ficco
- Department of General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich-Schiller-Universität Jena, Germany; Department of Linguistics and Cultural Evolution, International Max Planck Research School for the Science of Human History, Jena, Germany
| | - Sabrina Trapp
- Macromedia University of Applied Sciences, Munich, Germany
| | - Sophie-Marie Rostalski
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich-Schiller-Universität Jena, Germany
| | - Lukas Korn
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich-Schiller-Universität Jena, Germany
| | - Gyula Kovács
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich-Schiller-Universität Jena, Germany.
| |
Collapse
|
2
|
Perquin M, Viswanathan S, Vaillant M, Risius O, Huiart L, Schmit JC, Diederich NJ, Fink GR, Kukolja J. An individualized functional magnetic resonance imaging protocol to assess semantic congruency effects on episodic memory in an aging multilingual population. Front Aging Neurosci 2022; 14:873376. [PMID: 35936775 PMCID: PMC9354990 DOI: 10.3389/fnagi.2022.873376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The cognitive stimulation induced by multilingualism may slow down age-related memory impairment. However, a suitable neuroscientific framework to assess the influence of multilingualism on age-related memory processes is missing. We propose an experimental paradigm that assesses the effects of semantic congruency on episodic memory using functional magnetic resonance imaging (fMRI). To this end, we modified the picture-word interference (PWI) task to be suitable for the assessment of older multilingual subjects undergoing fMRI. In particular, stimulus materials were prepared in multiple languages (French, German, Luxembourgish, English) and closely matched in semantic properties, thus enabling participants to perform the experiment in a language of their choice. This paradigm was validated in a group (n = 62) of healthy, older participants (over 64 years) who were multilingual, all practicing three or more languages. Consistent with the engagement of semantic congruency processes, we found that the encoding and recognition of semantically related vs. unrelated picture-word pairs evoked robust differences in behavior and the neural activity of parietal-temporal networks. These effects were negligibly modulated by the language used to perform the task. Based on this validation in a multilingual population, we conclude that the proposed paradigm will allow future studies to evaluate whether multilingualism aptitude engages neural systems in a manner that protects long-term memory from aging-related decline.
Collapse
Affiliation(s)
- Magali Perquin
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
- *Correspondence: Magali Perquin,
| | - Shivakumar Viswanathan
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Okka Risius
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Mental Health, Marienheide, Germany
| | - Laetitia Huiart
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
- Santé Publique France, Saint-Maurice, France
| | - Jean-Claude Schmit
- Luxembourg Institute of Health, Strassen, Luxembourg
- Directorate of Health, Ministry of Health, Luxembourg, Luxembourg
| | - Nico J. Diederich
- Department of Neurology, Luxembourg Hospital Center, Luxembourg, Luxembourg
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juraj Kukolja
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
3
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|