1
|
Eaves DL, Hodges NJ, Buckingham G, Buccino G, Vogt S. Enhancing motor imagery practice using synchronous action observation. PSYCHOLOGICAL RESEARCH 2024; 88:1891-1907. [PMID: 36574019 PMCID: PMC11315722 DOI: 10.1007/s00426-022-01768-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/07/2022] [Indexed: 12/28/2022]
Abstract
In this paper, we discuss a variety of ways in which practising motor actions by means of motor imagery (MI) can be enhanced via synchronous action observation (AO), that is, by AO + MI. We review the available research on the (mostly facilitatory) behavioural effects of AO + MI practice in the early stages of skill acquisition, discuss possible theoretical explanations, and consider several issues related to the choice and presentation schedules of suitable models. We then discuss considerations related to AO + MI practice at advanced skill levels, including expertise effects, practical recommendations such as focussing attention on specific aspects of the observed action, using just-ahead models, and possible effects of the perspective in which the observed action is presented. In section "Coordinative AO + MI", we consider scenarios where the observer imagines performing an action that complements or responds to the observed action, as a promising and yet under-researched application of AO + MI training. In section "The dual action simulation hypothesis of AO + MI", we review the neurocognitive hypothesis that AO + MI practice involves two parallel action simulations, and we consider opportunities for future research based on recent neuroimaging work on parallel motor representations. In section "AO + MI training in motor rehabilitation", we review applications of AO, MI, and AO + MI training in the field of neurorehabilitation. Taken together, this evidence-based, exploratory review opens a variety of avenues for future research and applications of AO + MI practice, highlighting several clear advantages over the approaches of purely AO- or MI-based practice.
Collapse
Affiliation(s)
- Daniel L Eaves
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Nicola J Hodges
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Gavin Buckingham
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele and Vita Salute San Raffaele University, Milan, Italy
| | - Stefan Vogt
- Department of Psychology, Lancaster University, Lancaster, UK.
| |
Collapse
|
2
|
Kuhn YA, Egger S, Bugnon M, Lehmann N, Taubert M, Taube W. Age-related decline in GABAergic intracortical inhibition can be counteracted by long-term learning of balance skills. J Physiol 2024; 602:3737-3753. [PMID: 38949035 DOI: 10.1113/jp285706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Ageing induces a decline in GABAergic intracortical inhibition, which seems to be associated not only with decremental changes in well-being, sleep quality, cognition and pain management but also with impaired motor control. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. Therefore, the present study investigated whether age-related cortical dis-inhibition could be reversed after 6 months of balance learning and whether improvements in postural control correlated with the extent of reversed dis-inhibition. The results demonstrated that intracortical inhibition can be upregulated in elderly subjects after long-term balance learning and revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition and may therefore be seminal for many pathologies in which the equilibrium between inhibitory and excitatory neurotransmitters is disturbed. KEY POINTS: Ageing induces a decline in GABAergic intracortical inhibition. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. After 6 months of balance learning, intracortical inhibition can be upregulated in elderly subjects. The results of this study also revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition.
Collapse
Affiliation(s)
- Yves-Alain Kuhn
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sven Egger
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Matteo Bugnon
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nico Lehmann
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Magdeburg, Germany
| | - Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Liu M, He J, Liu D, Hou M, Ma Y. Bibliometric and visualized analysis of dynamic balance and brain function using web of science and CiteSpace from 1995 to 2022. Heliyon 2024; 10:e24300. [PMID: 38293478 PMCID: PMC10824782 DOI: 10.1016/j.heliyon.2024.e24300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose This study aims to explore the dynamic balance of human beings and investigate the relationship between functional structure as well as functional connectivity. Through a comprehensive bibliometric and visual analysis of the research literature from 1995 to 2022, we quantitatively display the development of the dynamic balance and brain structure as well as functional connection. Our objective is to present new trends and frontiers in the study of dynamic balance and brain function through bibliometrics software, providing valuable insights for future research in this domain. Methods The literature on dynamic balance, brain structure and functional connectivity between 1995 and 2022 was retrieved from the Web of Science database. We employed CiteSpace software to analyze various aspects, including the year of publication, journal, authors, keywords, institutions, countries, and references. Based on the analysis results, a co-reference map was generated to visually observe research hotspots and knowledge structures. Results A total of 1533 records were retrieved during the survey period (1995-2022), with a gradually increase in the number of annual publications. Notably, the data suggests a notable increase in publications between 2020 and 2021. The number of publications increased by 20 % from 2020 to 2021. The journal "Proceedings of the National Academy of Sciences (PNAS)" emerged as the most prolific journal. Among the cited authors, Deco and Gustavo ranked at the top. Key research terms in this field include "neural network", "functional connectivity", "dynamic", "model" and "brain". Particularly, the keyword "neural network" exhibited the strongest growth. The analysis of keywords cluster revealed the top 10 clusters of research themes. Oxford University stood out as the most productive institution, while the United States held the greatest influence with the highest number of publications and centrality. The reference cluster analysis further demonstrated the top 10 clusters in the literature. Conclusion Through the use of CiteSpace software, this study performed a comprehensive bibliometric and visual analysis of the Web of Science research literature on human dynamic balance and brain structural as well as functional connectivity over the past few decades. This may help researchers identify new perspectives on potential collaborators as well as collaborating institutions, hot topics, and research frontiers in the research field. The results provided an intuitive displayed overview of research trends, hotspots and frontiers in this field, facilitating a general understanding of its progression. Through unremitting efforts, it provides valuable guidance and reference for future research work.
Collapse
Affiliation(s)
- Mengjiao Liu
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo 315211, China
| | - Jian He
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo 315211, China
| | - Dongwei Liu
- School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou 310018, China
| | - Meijin Hou
- National Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
- Key Laboratory of Orthopaedics and Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Ye Ma
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo 315211, China
- National Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| |
Collapse
|
4
|
Bakker LBM, Lamoth CJC, Vetrovsky T, Gruber M, Caljouw SR, Nieboer W, Taube W, van Dieën JH, Granacher U, Hortobágyi T. Neural Correlates of Balance Skill Learning in Young and Older Individuals: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2024; 10:3. [PMID: 38185708 PMCID: PMC10772137 DOI: 10.1186/s40798-023-00668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Despite the increasing number of research studies examining the effects of age on the control of posture, the number of annual fall-related injuries and deaths continues to increase. A better understanding of how old age affects the neural mechanisms of postural control and how countermeasures such as balance training could improve the neural control of posture to reduce falls in older individuals is therefore necessary. The aim of this review is to determine the effects of age on the neural correlates of balance skill learning measured during static (standing) and dynamic (walking) balance tasks in healthy individuals. METHODS We determined the effects of acute (1-3 sessions) and chronic (> 3 sessions) balance skill training on balance in the trained and in untrained, transfer balance tasks through a systematic review and quantified these effects by robust variance estimation meta-analysis in combination with meta-regression. We systematically searched PubMed, Web of Science, and Cochrane databases. Balance performance and neural plasticity outcomes were extracted and included in the systematic synthesis and meta-analysis. RESULTS Forty-two studies (n = 622 young, n = 699 older individuals) were included in the systematic synthesis. Seventeen studies with 508 in-analysis participants were eligible for a meta-analysis. The overall analysis revealed that acute and chronic balance training had a large effect on the neural correlates of balance skill learning in the two age groups combined (g = 0.79, p < 0.01). Both age groups similarly improved balance skill performance in 1-3 training sessions and showed little further improvements with additional sessions. Improvements in balance performance mainly occurred in the trained and less so in the non-trained (i.e., transfer) balance tasks. The systematic synthesis and meta-analysis suggested little correspondence between improved balance skills and changes in spinal, cortical, and corticospinal excitability measures in the two age groups and between the time courses of changes in balance skills and neural correlates. CONCLUSIONS Balance skill learning and the accompanying neural adaptations occur rapidly and independently of age with little to no training dose-dependence or correspondence between behavioral and neural adaptations. Of the five types of neural correlates examined, changes in only spinal excitability seemed to differ between age groups. However, age or training dose in terms of duration did not moderate the effects of balance training on the changes in any of the neural correlates. The behavioral and neural mechanisms of strong task-specificity and the time course of skill retention remain unclear and require further studies in young and older individuals. REGISTRATION PROSPERO registration number: CRD42022349573.
Collapse
Affiliation(s)
- Lisanne B M Bakker
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands.
| | - Claudine J C Lamoth
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Tomas Vetrovsky
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Markus Gruber
- Department of Sport Science, Human Performance Research Centre, University of Konstanz, Constance, Germany
| | - Simone R Caljouw
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Ward Nieboer
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
- Institute of Sport Sciences and Physical Education, University of Pécs, Pecs, Hungary
- Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| |
Collapse
|
5
|
Binks JA, Wilson CJ, Van Schaik P, Eaves DL. Motor learning without physical practice: The effects of combined action observation and motor imagery practice on cup-stacking speed. PSYCHOLOGY OF SPORT AND EXERCISE 2023; 68:102468. [PMID: 37665909 DOI: 10.1016/j.psychsport.2023.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 09/06/2023]
Abstract
In this study we explored training effects for combined action observation and motor imagery (AO + MI) instructions on a complex cup-stacking task, without physical practice. Using a Graeco-Latin Square design, we randomly assigned twenty-six participants into four groups. This counterbalanced the within-participant factor of practice condition (AO + MI, AO, MI, Control) across four cup-stacking tasks, which varied in their complexity. On each of the three consecutive practice days participants experienced twenty trials under each of the three mental practice conditions. On each trial, a first-person perspective video depicted bilateral cup-stacking performed by an experienced model. During AO, participants passively observed this action, responding only to occasional colour cues. For AO + MI, participants imagined performing the observed action and synchronised their concurrent MI with the display. For MI, a sequence of pictures cued imagery of each stage of the task. Analyses revealed a significant main effect of practice condition both at the 'surprise' post-test (Day 3) and at the one-week retention test. At both time points movement execution times were significantly shorter for AO + MI compared with AO, MI and the Control. Execution times were also shorter overall at the retention compared with the post-test. These results demonstrate that a complex novel motor task can be acquired without physical training. Practitioners can therefore use AO + MI practice to supplement physical practice and optimise skill learning.
Collapse
Affiliation(s)
- J A Binks
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK.
| | - C J Wilson
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - P Van Schaik
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - D L Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
6
|
Wang D, Zhou J, Huang Y, Yu H. Identifying the changes in the cortical activity of various brain regions for different balance tasks: A review. NeuroRehabilitation 2023:NRE220285. [PMID: 37125575 DOI: 10.3233/nre-220285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Balance support is critical to a person's overall function and health. Previous neuroimaging studies have shown that cortical structures play an essential role in postural control. OBJECTIVE This review aims to identify differences in the pattern of neural activity induced by balance tasks with different balance control requirements. METHODS Seventy-four articles were selected from the field of balance training and were examined based on four brain function detection technologies. RESULTS In general, most studies focused on the activity changes of various cortical areas during training at different difficulty levels, but more and more attention has also begun to focus on the functional changes of other cortical and deep subcortical structures. Our analysis also revealed the neglect of certain task types. CONCLUSION Based on these results, we identify and discuss future research directions that may contribute to a clear understanding of neural functional plasticity under different tasks.
Collapse
Affiliation(s)
- Duojin Wang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| | - Jiankang Zhou
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanping Huang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| |
Collapse
|
7
|
Binks JA, Emerson JR, Scott MW, Wilson C, van Schaik P, Eaves DL. Enhancing upper-limb neurorehabilitation in chronic stroke survivors using combined action observation and motor imagery therapy. Front Neurol 2023; 14:1097422. [PMID: 36937513 PMCID: PMC10017546 DOI: 10.3389/fneur.2023.1097422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction For people who have had a stroke, recovering upper-limb function is a barrier to independence. When movement is difficult, mental practice can be used to complement physical therapy. In this within-participants study we investigated the effects of combined action observation and motor imagery (AO + MI) therapy on upper-limb recovery in chronic stroke survivors. Methods A Graeco-Latin Square design was used to counterbalance four mental practice conditions (AO + MI, AO, MI, Control) across four cup-stacking tasks of increasing complexity. Once a week, for five consecutive weeks, participants (n = 10) performed 16 mental practice trials under each condition. Each trial displayed a 1st person perspective of a cup-stacking task performed by an experienced model. For AO, participants watched each video and responded to an occasional color cue. For MI, participants imagined the effort and sensation of performing the action; cued by a series of still-images. For combined AO + MI, participants observed a video of the action while they simultaneously imagined performing the same action in real-time. At three time points (baseline; post-test; two-week retention test) participants physically executed the three mentally practiced cup-stacking tasks, plus a fourth unpractised sequence (Control), as quickly and accurately as possible. Results Mean movement execution times were significantly reduced overall in the post-test and the retention test compared to baseline. At retention, movement execution times were significantly shorter for combined AO + MI compared to both MI and the Control. Individual participants reported clinically important changes in quality of life (Stroke Impact Scale) and positive qualitative experiences of AO + MI (social validation). Discussion These results indicate that when physical practice is unsuitable, combined AO + MI therapy could offer an effective adjunct for neurorehabilitation in chronic stroke survivors.
Collapse
Affiliation(s)
- Jack Aaron Binks
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Jonathan Reyes Emerson
- School of Health and Life Sciences, Allied Health Professions, Teesside University, Middlesbrough, United Kingdom
| | | | - Christopher Wilson
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Paul van Schaik
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Daniel Lloyd Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Riedmann U, Fink A, Weber B, Koschutnig K. Functional Connectivity as an Index of Brain Changes Following a Unicycle Intervention: A Graph-Theoretical Network Analysis. Brain Sci 2022; 12:brainsci12081092. [PMID: 36009155 PMCID: PMC9405869 DOI: 10.3390/brainsci12081092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Grey matter volume reductions in the right superior temporal gyrus (rSTG) were observed in young adults who learned to ride a unicycle. As these decreases were correlated with the acquired ability in unicycling, the authors interpreted the change as a brain tissue reorganization to increase postural control’s automated and efficient coordination. The current study aims to further corroborate this interpretation by looking at changes in the functional brain network in the very same sample of participants. For this reason, we applied graph theory, a mathematics field used to study network structure functionality. Four global and two local graph-theoretical parameters were calculated to measure whole brain and rSTG specific changes in functional network activity following the three-week-unicycle training. Findings revealed that the Local Efficiency of the rSTG was significantly elevated after the intervention indicating an increase in fault tolerance of the rSTG, possibly reflecting decentralisation of rSTG specific functions to neighbouring nodes. Thus, the increased Local Efficiency may indicate increased task efficiency by decentralising the processing of functions crucial for balance.
Collapse
|
9
|
Lin CH, Lu FJ, Gill DL, Huang KSK, Wu SC, Chiu YH. Combinations of action observation and motor imagery on golf putting's performance. PeerJ 2022; 10:e13432. [PMID: 35578670 PMCID: PMC9107300 DOI: 10.7717/peerj.13432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/22/2022] [Indexed: 01/20/2023] Open
Abstract
Motor imagery (MI) and action observation (AO) have been found to enhance motor performance, but recent research found that a combination of action observation and motor imagery (AOMI) together is even better. Despite this initial finding, the most effective way to combine them is unknown. The present study examined the effects of synchronized (i e., concurrently doing AO and MI), asynchronised (i.e., first doing AO then MI), and progressive (first asynchronised approach, then doing synchronized approach) AOMI on golf putting performance and learning. We recruited 45 university students (Mage = 20.18 + 1.32 years; males = 23, females = 22) and randomly assigned them into the following four groups: synchronized group (S-AOMI), asynchronised group (A-AOMI), progressive group (A-S-AOMI), and a control group with a pre-post research design. Participants engaged in a 6-week (three times/per-week) intervention, plus two retention tests. A two-way (group × time) mixed ANOVA statistical analysis found that the three experimental groups performed better than the control group after intervention. However, we found progressive and asynchronised had better golf putting scores than synchronized group and the control group on the retention tests. Our results advance knowledge in AOMI research, but it needs more research to reveal the best way of combining AOMI in the future. Theoretical implications, limitations, applications, and future suggestions are also discussed.
Collapse
Affiliation(s)
- Chi-Hsian Lin
- Physical Education Office, National Taipei University, Taipei City, Taiwan
| | - Frank J.H. Lu
- Department of Physical Education, Chinese Culture University, Taipei, Taiwan
| | - Diane L. Gill
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, United States of America
| | - Ken Shih-Kuei Huang
- Department of Physical Education, Chinese Culture University, Taipei, Taiwan
| | - Shu-Ching Wu
- Center for General Education, Ling-Tung University, Taichung, Taiwan
| | - Yi-Hsiang Chiu
- Department of Physical Education, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
10
|
Duda BM, Sweet LH. Functional brain changes associated with cognitive training in healthy older adults: A preliminary ALE meta-analysis. Brain Imaging Behav 2021; 14:1247-1262. [PMID: 30900077 DOI: 10.1007/s11682-019-00080-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accumulating evidence suggests that cognitive training (CT) programs may provide healthy older adults (OAs) with cognitive benefits that are accompanied by alterations in neural activity. The current review offers the first quantitative synthesis of the available literature on the neural effects of CT in healthy aging. It was hypothesized that OAs would evidence increased and decreased neural activations across various challenging CTs, and that these effects would be observed as significantly altered clusters within regions of the frontoparietal network (FPN). Online databases and reference lists were searched to identify peer-reviewed publications that reported assessment of neural changes associated with CT programs in healthy OAs. Among the 2097 candidate studies identified, 14 studies with a total of 238 participants met inclusionary criteria. GingerALE software was used to quantify neural effects in a whole-brain analysis. The activation likelihood estimation technique revealed significant increases in activation following CT in the left hemisphere middle frontal gyrus, precentral gyrus, and posterior parietal cortex, extending to the superior occipital gyrus. Two clusters of diminished neural activity following CT were identified within the right hemisphere middle frontal gyrus and supramarginal gyrus, extending to the superior temporal gyrus. These results provide preliminary evidence of common neural effects of different CT interventions within regions of the FPN. Findings may inform future investigations of neuroplasticity across the lifespan, including clinical applications of CT, such as assessing treatment outcomes.
Collapse
Affiliation(s)
- Bryant M Duda
- Department of Psychology, University of Georgia, Athens, GA, 30602-3001, USA.
| | - Lawrence H Sweet
- Department of Psychology, University of Georgia, Athens, GA, 30602-3001, USA.,Department of Psychiatry & Human Behavior, Brown University Medical School, Providence, RI, USA
| |
Collapse
|
11
|
Seidel-Marzi O, Hähner S, Ragert P, Carius D. Task-Related Hemodynamic Response Alterations During Slacklining: An fNIRS Study in Advanced Slackliners. FRONTIERS IN NEUROERGONOMICS 2021; 2:644490. [PMID: 38235235 PMCID: PMC10790949 DOI: 10.3389/fnrgo.2021.644490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 01/19/2024]
Abstract
The ability to maintain balance is based on various processes of motor control in complex neural networks of subcortical and cortical brain structures. However, knowledge on brain processing during the execution of whole-body balance tasks is still limited. In the present study, we investigated brain activity during slacklining, a task with a high demand on balance capabilities, which is frequently used as supplementary training in various sports disciplines as well as for lower extremity prevention and rehabilitation purposes in clinical settings. We assessed hemodynamic response alterations in sensorimotor brain areas using functional near-infrared spectroscopy (fNIRS) during standing (ST) and walking (WA) on a slackline in 16 advanced slackliners. We expected to observe task-related differences between both conditions as well as associations between cortical activity and slacklining experience. While our results revealed hemodynamic response alterations in sensorimotor brain regions such as primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA) during both conditions, we did not observe differential effects between ST and WA nor associations between cortical activity and slacklining experience. In summary, these findings provide novel insights into brain processing during a whole-body balance task and its relation to balance expertise. As maintaining balance is considered an important prerequisite in daily life and crucial in the context of prevention and rehabilitation, future studies should extend these findings by quantifying brain processing during task execution on a whole-brain level.
Collapse
Affiliation(s)
- Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Susanne Hähner
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel Carius
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Li H, Liang S, Yu Y, Wang Y, Cheng Y, Yang H, Tong X. Clinical experience of comprehensive treatment on the balance function of Parkinson's disease. Medicine (Baltimore) 2020; 99:e20154. [PMID: 32384503 PMCID: PMC7220268 DOI: 10.1097/md.0000000000020154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 11/26/2022] Open
Abstract
To investigate the effect of multi-disciplinary teamwork on balance performance of Parkinson's disease (PD).Sixteen primary Parkinson's disease patients (8 male, 8 female) treated with bilateral subthalamic nucleus deep brain stimulation (STN-DBS) were included in the study. The median age of patients was 60.5 years; all patients were in the Hoehn&Yahr (H&Y) 3 stage; the median PD duration of the disease was 9 years. For each patient, multi-disciplinary teamwork treatment including DBS, medication, physical therapy and psychotherapy proceeded. levodopa equivalent daily dose (LEDD, mg/day), life quality (PDQ-39), Motor disability (MDS-UPDRSIII) and balance performance (MDS-UPDRS 3.12, Berg Balance Scale BBS, Limits of Stability LoS) were assessed in different time and status respectively: preoperation (Med-off, Med-on), postoperation (Stim-Off/Med-Off, Stim-On/Med-Off, Stim-On/Med-On), 6 months postoperation (Stim-On/ Med-Off, Stim-On/Med-On) and 12 months postoperation (Stim-On/Med-Off, Stim-On/Med-On).The LEDD, life quality (PDQ-39) continued to improve during the follow-up, statistical difference were found in both 6 months postoperation and 12 months postoperation compared with preoperation. The Motor disability (MDS-UPDRSIII), balance performance (MDS-UPDRS 3.12, BBS) and the LoS (target acquisition percentage, trunk swing angle standard deviation, time) showed significant improvement in Stim-On/med-Off 6 months postoperation and 12 months postoperation separately compared with Med-Off preoperation.Multi-disciplinary teamwork for PD patients with STN-DBS could improve balance performance.
Collapse
Affiliation(s)
- Haitao Li
- Graduate School of Tianjin Medical University
- Department of Neurosurgery, Tianjin Huanhu Hosptial
| | - Siquan Liang
- Department of Neurosurgery, Tianjin Huanhu Hosptial
| | - Yang Yu
- Department of Neurological Rehabilitation, Tianjin Huanhu Hospital
| | - Yue Wang
- Department of Neurological Rehabilitation, Tianjin Huanhu Hospital
| | - Yuanyuan Cheng
- Department of Neurological Rehabilitation, Tianjin Huanhu Hospital
| | - Hechao Yang
- Department of Psychology, Tianjin Huanhu Hosptial, Tianjin, China
| | - Xiaoguang Tong
- Graduate School of Tianjin Medical University
- Department of Neurosurgery, Tianjin Huanhu Hosptial
| |
Collapse
|
13
|
Cheng YS, Chien A, Lai DM, Lee YY, Cheng CH, Wang SF, Chang YJ, Wang JL, Hsu WL. Perturbation-Based Balance Training in Postoperative Individuals With Degenerative Cervical Myelopathy. Front Bioeng Biotechnol 2020; 8:108. [PMID: 32154235 PMCID: PMC7044125 DOI: 10.3389/fbioe.2020.00108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/03/2020] [Indexed: 11/28/2022] Open
Abstract
Degenerative cervical myelopathy (DCM) is a common aging condition caused by spinal cord compression. Individuals with DCM often presented with residual balance and functional impairments postoperatively. Perturbation-based balance training (PBT) has been shown to have positive effects on populations with neurological disorders but has yet to be investigated in DCM. The objective of this study was therefore to evaluate the effects of PBT on balance and functional performance in postoperative individuals with DCM. Fifteen postoperative individuals with DCM (DCM group) and 14 healthy adults (healthy control group) were recruited. The DCM group received a 4-weeks PBT using a perturbation treadmill. The outcome measures included mean velocity of center of pressure (COP) during quiet standing; center of mass (COM) variance and reaction time to balance perturbation during standing with forward and backward perturbation; gait speed during level ground walking; Timed Up and Go Test (TUG) and disability questionnaire scores including Visual Analog Scale, Neck Disability Index, and Lower Extremity Function of Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire. The assessments were conducted pre- and post-training postoperatively for the DCM group but only once for the healthy control group. Significant improvements were observed in the mean velocity of COP, COM variance, reaction time, gait speed, and TUG in the DCM group. Disability questionnaire scores were not significantly different after training in DCM group. For between-group comparisons, significant differences that were observed pre-training were not observed post-training. The 4-weeks PBT is a potential rehabilitation strategy for addressing balance and functional impairment in postoperative individuals with DCM. In addition, the post-training performance in the DCM group exhibited trends comparable to those of age-matched healthy controls. Furthermore, the training regimens offer a practical reference for future studies on populations with balance disorders. Future studies complemented with neurophysiological assessments could reveal more information of the underlying mechanisms of PBT.
Collapse
Affiliation(s)
- Yi-Shan Cheng
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Physical Therapy, Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Andy Chien
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Dar-Ming Lai
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Yun Lee
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Hsiu Cheng
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shwu-Fen Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Ju Chang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Hsu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Systematic Balance Exercises Influence Cortical Activation and Serum BDNF Levels in Older Adults. J Clin Med 2019; 8:jcm8111910. [PMID: 31703409 PMCID: PMC6912622 DOI: 10.3390/jcm8111910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022] Open
Abstract
We sought to investigate whether systematic balance training modulates brain area activity responsible for postural control and influence brain-derived neurotrophic factor (BDNF) mRNA protein expression. Seventy-four older adults were randomly divided into three groups (mean age 65.34 ± 3.79 years, 30 females): Classic balance exercises (CBT), virtual reality balance exercises (VBT), and control (CON). Neuroimaging studies were performed at inclusion and after completion of the training or 12 weeks later (CON). Blood samples were obtained to measure BDNF expression. The study revealed significant interaction of sessions and groups: In the motor imagery (MI) condition for supplementary motor area (SMA) activity (Fat peak = 5.25, p < 0.05); in the action observation (AO) condition for left and right supramarginal gyrus/posterior insula (left: Fat peak = 6.48, p < 0.05; right: Fat peak = 6.92, p < 0.05); in the action observation together with motor imagery (AOMI) condition for the middle occipital gyrus (laterally)/area V5 (left: Fat peak = 6.26, p < 0.05; right: Fat peak = 8.37, p < 0.05), and in the cerebellum–inferior semilunar lobule/tonsil (Fat peak = 5.47, p < 0.05). After the training serum BDNF level has increased in CBT (p < 0.001) and in CBT compared to CON (p < 0.05). Systematic balance training may reverse the age-related cortical over-activations and appear to be a factor mediating neuroplasticity in older adults.
Collapse
|
15
|
Giboin LS, Loewe K, Hassa T, Kramer A, Dettmers C, Spiteri S, Gruber M, Schoenfeld MA. Cortical, subcortical and spinal neural correlates of slackline training-induced balance performance improvements. Neuroimage 2019; 202:116061. [PMID: 31374329 DOI: 10.1016/j.neuroimage.2019.116061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/17/2019] [Accepted: 07/27/2019] [Indexed: 02/08/2023] Open
Abstract
Humans develop posture and balance control during childhood. Interestingly, adults can also learn to master new complex balance tasks, but the underlying neural mechanisms are not fully understood yet. Here, we combined broad scale brain connectivity fMRI at rest and spinal excitability measurements during movement. Six weeks of slackline training improved the capability to walk on a slackline which was paralleled by functional connectivity changes in brain regions associated with posture and balance control and by task-specific changes of spinal excitability. Importantly, the performance of trainees was not better than control participants in a different, untrained balance task. In conclusion, slackline training induced large-scale neuroplasticity which solely transferred into highly task specific performance improvements.
Collapse
Affiliation(s)
- Louis-Solal Giboin
- Sensorimotor Performance Lab, Human Research Performance Centre, University Konstanz, Germany.
| | - Kristian Loewe
- Dept of Experimental Neurology, Otto-von-Guericke-University Magdeburg, Germany; Dept of Computer Science, Otto-von-Guericke-University Magdeburg, Germany
| | - Thomas Hassa
- Lurija Institute, Kliniken Schmieder Allensbach, Germany
| | - Andreas Kramer
- Sensorimotor Performance Lab, Human Research Performance Centre, University Konstanz, Germany
| | - Christian Dettmers
- Lurija Institute, Kliniken Schmieder Allensbach, Germany; Kliniken Schmieder Konstanz, Germany
| | - Stefan Spiteri
- Lurija Institute, Kliniken Schmieder Allensbach, Germany
| | - Markus Gruber
- Sensorimotor Performance Lab, Human Research Performance Centre, University Konstanz, Germany
| | - Mircea Ariel Schoenfeld
- Dept of Experimental Neurology, Otto-von-Guericke-University Magdeburg, Germany; Lurija Institute, Kliniken Schmieder Allensbach, Germany; Dept of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Kliniken Schmieder Heidelberg, Germany
| |
Collapse
|
16
|
Weber B, Koschutnig K, Schwerdtfeger A, Rominger C, Papousek I, Weiss EM, Tilp M, Fink A. Learning Unicycling Evokes Manifold Changes in Gray and White Matter Networks Related to Motor and Cognitive Functions. Sci Rep 2019; 9:4324. [PMID: 30867464 PMCID: PMC6416294 DOI: 10.1038/s41598-019-40533-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/18/2019] [Indexed: 11/09/2022] Open
Abstract
A three-week unicycling training was associated with (1) reductions of gray matter volume in regions closely linked to visuospatial processes such as spatial awareness, (2) increases in fractional anisotropy primarily in the right corticospinal tract and in the right forceps major of the corpus callosum, and (3) a slowly evolving increase in cortical thickness in the left motor cortex. Intriguingly, five weeks later, during which participants were no longer regularly engaged in unicycling, a re-increase in gray matter was found in the very same region of the rSTG. These changes in gray and white matter morphology were paralleled by increases in unicycling performance, and by improvements in postural control, which diminished until the follow-up assessments. Learning to ride a unicycle results in reorganization of different types of brain tissue facilitating more automated postural control, clearly demonstrating that learning a complex balance task modulates brain structure in manifold and highly dynamic ways.
Collapse
Affiliation(s)
- Bernhard Weber
- Institute of Psychology, University of Graz, Graz, Austria
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria.
| | | | | | - Ilona Papousek
- Institute of Psychology, University of Graz, Graz, Austria
| | | | - Markus Tilp
- Institute of Sports Sciences, University of Graz, Graz, Austria
| | - Andreas Fink
- Institute of Psychology, University of Graz, Graz, Austria
| |
Collapse
|